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Prediction (classification / regression) by aggregating a set of weak learners.

Z Training data

Multiple
datasets

Multiple
classifiers

Combined
classifier

Z1 Z2 · · · Zn

h1 h2 · · · hn

h
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Idea: Build different experts, and let them vote.

Advantages

I Improve predictive performance
I Other types of classifiers can be directly included
I Easy to implement
I No too much parameter tuning

Drawbacks

I The resulting classifier h is not so transparent (black box)
I Not a compact representation
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Example

25 base classifiers hi, 1 ≤ i ≤ 25

I Each classifier hi has error rate ε = 0.35

I independence among classifiers

P : Probability that the ensemble classifier h makes a wrong prediction:

P =
25∑
i=1

(
25
i

)
εi(1− ε)25−i = 0.06

In the following...

Classifiers/regressors will be decision trees, but can be any other algorithm
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INTRODUCTION

BIAS-VARIANCE TRADE-OFF

Quality of predictive models are evaluated by their bias-variance properties.
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INTRODUCTION

BIAS-VARIANCE TRADE-OFF

Highly challenging to design the perfect model fZ (i.e. low bias and low
variance)

E(x,y)`(fZ(x), y) = E(x,y) `(fZ(x), f̄(x))︸ ︷︷ ︸
error between

model and average
over all predictions

VARIANCE

+ `(f̄(x), y)︸ ︷︷ ︸
error between

average predictor
and target

BIAS

with
I `: loss function
I Z: training set on which f is trained
I Z∗: true data distribution
I fZ(x): predictive value on x
I y : target value
I f̄ : average predictor, f̄(x) =

∫
Z′⊂Z∗ fZ′ (x)p(Z′)dZ′
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INTRODUCTION

REDUCING VARIANCE

Minimizing the variance

I Decision trees have low bias but high variance.
I Find a way to reduce variance: MinE(x,y)`(fZ(x), f̄(x))

I Idea: take the average of multiple solutions→ Ensemble methods

fZ(x) =
1

m

M∑
i=1

fZj (x) −→
M→∞

f̄(x)

Why ?

xi random variables iid with mean x̄

Law of large numbers: lim
M→∞

1
m

M∑
i=1

xi = x̄

How to choose the Zi’s ?
1 Sampling Z with replacement: Bagging
2 Sampling without replacement and with strategies: Boosting
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PRINCIPLE

BAGGING

Bagging = Bootstrap Aggregation

1 Learning stage
I Given a dataset Z, at each iteration i, a training set Zi is sampled with

replacement (bootstrap) from Z, |Zi| ≤ |Z|
I A classifier hi is learned for each Zi

2 Classification stage on x
I each hi returns its prediction
I The bagged classifier h votes and assigned the class with the most votes to

x

3 Regression stage on x
I each hi returns its prediction
I The bagged classifier h votes and assigned the mean value to x

9 / 32



INTRODUCTION BAGGING RANDOM FOREST BOOSTING GRADIENT BOOSTING

PRINCIPLE
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PRINCIPLE
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PRINCIPLE
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WHY DOES BAGGING WORK?

BAGGING

Why does bagging work?

I Break the assumption of the law of large numbers (Zi data not iid)
I But ...it almost always reduces variance by voting/averaging
I Reduce variance without increasing the error of an unbiased model
I Does not focus on any particular instance of the training data
⇒ less susceptible to model overfitting when applied to noisy data

I Usually, the more classifiers the better

Out-of-Bag

I If n is large, after n samples have been drawn, the probability that a
sample has not been drawn yet is

(
1− 1

n

)n ≈ e−1

I Each Zi contains (1− e−1) ≈ 63.2% of the samples
I ≈ 36.8% of the samples can be used for efficient assessment of model

performance (Out-of-bag evaluation)
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EXAMPLE

REGRESSION EXAMPLE
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EXAMPLE

ADD TREES...

Adding trees Average prediction error decreases

But...

Bagging results in tree correlation
⇒ Prevents from optimally reduce variance of the predictive values.
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RANDOM FOREST

DEFINITION

Bagging to much results in tree correlations⇒ Find a way to bag unique trees.

Definition

I Combination of tree predictors
I Each tree depends on the values of a random vector sampled in

dependently
I The generalization error depends on the strength of the individual

trees and the correlation between them
I Using a random selection of features yields results favorable to

AdaBoost, and are more robust w.r.t. noise
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ALGORITHM

Algorithm 1: Random forest classifier
Data: Z =

{
(xi, yi), 1 ≤ i ≤ n, yi ∈ {−1, 1}

}
, x ∈ X, |X| = d,M nb of weak classifiers,k

Result: h: strong classifier
for i ← 1 to k do

Build subsetZi by sampling with replacement fromZ
Learn tree hi fromZi :
for Each node do

randomly select p ≤ d features and choose best of these p

Each tree grows to the largest extend, no pruning
Make predictions according to majority vote of the set of k trees

Advantages

Advantages
I Runs efficiently on large data bases.
I can handle thousands of input variables without variable deletion.
I Gives estimates of what variables are important in the classification.
I Generates an internal unbiased estimate of the generalization error

as the forest building progresses.
I Possible estimation of missing data
I Handle unbalanced datasets
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ALGORITHM

PARAMETERS

Rules of thumb

I Number of trees: start with 10d and adjust
I d: Regression trees: p = d/3 ; Classification trees p =

√
d

I Node size: 5 (regression), 1 (classification)
I Split rule: variance (regression), Gini/cross entropy (classification)
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EXAMPLES

CLASSIFICATION

Two-moons binary classification, 500 trees.
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EXAMPLES

REGRESSION
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DESCRIPTION

BOOSTING

Context: high bias models (e.g decision trees with limited depth)

Question

Can we design an ensemble method that combines a large number of
weak learners to lower the bias ?

Principle

I Meta-algorithm for reducing bias
I Family of machine learning algorithms which convert weak classifiers

to a strong one
I Pays higher focus on examples which are misclassified or have higher

errors by preceding weak classifiers.
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DESCRIPTION

FIRST ALGORITHM

Algorithm 2: Shapire’s algorithm
Data:
Z =

{
(xi, yi), 1 ≤ i ≤ n, xi ∈ X, yi ∈ {−1, 1}

}
, x ∈ X

Result: h: strong classifier

1 Z1 : subset of n1 < n samples ofZ randomly drawn without replacement

2 Learn a weak classifier h1 onZ1

3 Z2 : subset of n2 < n samples ofZ, half of which are badly classified by h1

4 Learn a weak classifier h2 onZ2

5 Z3 : Set of samples on which h1 and h2 disagree

6 Learn a weak classifier h3 onZ3

h(x) = sign

 3∑
i=1

hi(x)


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ADABOOST

Algorithm 3: Adaboost
Data:
Z =

{
(xi, yi), 1 ≤ i ≤ n, xi ∈ X, yi ∈ {−1, 1}

}
, x ∈ X,M nb of weak classifiers

Result: h: strong classifier
Weight initializationw : ∀i ∈ {1 · · ·n}, (wi = 1

n
)

for i ← 1 toM do
Compute hi onZ weighted byw

Compute the error εi =

n∑
j=1

Ihi(xj) 6=yj

Compute the weight of the weak classifier αi ←
1
2
log

(
1−εi
εi

)
for j ← 1 to n do

wj ← wjexp
[
−αiyjhi(xj)

]
Weight normalization: W =

n∑
j=1

wj

for j ← 1 to n do
wj ← wj/W

h(x) = sign

 M∑
j=1

αjhj(x)


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EXAMPLE

M = 3, classify blue crosses / red lines.

(a) h1 , ε1 = 0.3 (b) h2 , ε1 = 0.21 (c) h3 , ε3 = 0.14

Adaboost gives weights α1 = 0.42, α2 = 0.65 and α3 = 0.92 and computes h
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EXAMPLE

ADABOOST ERROR

If the error of hi is 1
2
− γi, then the error of h is at most

exp

(
−2

M∑
i=1

γ2i

)

which tends to 0 if we can guarantee γi ≥ γ for a fixed γ.
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PROS AND CONS

PROS AND CONS

Advantages

I Simple and easy to implement
I Flexible
I No parameters to tune (except M)
I No prior knowledge needed about weak learner
I Provably effective
I Can be applied on a wide variety of problems

Drawbacks

I Performance of AdaBoost depends on data and weak classifier
I if weak classifier too complex (resp too weak)→ overfitting (resp.

underfitting)
I sensitive to uniforme noise
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EXAMPLE

Weak classifiers: decision trees. Influence of M

25 / 32



INTRODUCTION BAGGING RANDOM FOREST BOOSTING GRADIENT BOOSTING

VARIATIONS

Variations

I Real AdaBoost: Fits an additive logistic regression model: stagewise
optimization of E

(
e−yf(x)

)
I LogitBoost: Uses adaptive Newton steps for fitting an additive

symmetric logistic model by maximum likelihood

Multiclass

One v.s. All seems to work very well most of the time.
Error output code seems to be useful when the number of classes is big.

26 / 32



INTRODUCTION BAGGING RANDOM FOREST BOOSTING GRADIENT BOOSTING

BAGGING VS. BOOSTING

I Aggregate multiple hypotheses generated by the same learning algorithm
invoked over different distributions of training data

I Generate a classifier with a smaller error on the training data as it combines
multiple hypotheses which individually have a large error

But...

1 Training set
I Bagging replicates training sets by sampling with replacement from the

training instances
I Boosting uses all instances but weights them and therefore produces

different classifiers

2 Classifiers
I Bagging: classifiers have equal vote. Majority wins
I Boosting: vote dependent on the classifier’s accuracy. Extra weightage to

the opinion of some

27 / 32



INTRODUCTION BAGGING RANDOM FOREST BOOSTING GRADIENT BOOSTING

BOOSTING VS. RANDOM FOREST

I Random forest algorithm is more robust and faster to train
I It can handle missing and unbalanced data
I But... the feature selection process is not explicit
I and it has weaker performance on small size training data
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DEFINITION

Adaboost is an optimization algorithm:

Min J(f) =
m∑
i=1

exp (−yif((xi))

Gradient Boosting

Generalizing this approach with different objective functions and their gra-
dients.

Principle

I Learn a classifier/regressor h1

I Error: Eh1
=

n∑
i=1

` (yi, h1(xi))

I Residual on xi: ei = yi − h1(xi)

I If ∃ĥ such that ∀i ĥ(xi) = ei, then F = h1 + ĥ will have a null error.

I ĥ hard to find⇒ Find h2 such that ∀i |h2(xi)− ei| < ε

I ...
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Example:

` (y, h1(x)) =
1

2
(y − h1(x))2

Then:

e = y − h1(x) = −
∂

∂h1(x)
` (y, h1(x))

ei: opposite of the gradient.
⇒ new learning set S̃ = {xi, ei}1≤i≤m to learn h2.
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ALGORITHM

Algorithm 4: Gradient Boosting
Data: Z = {xi, yi}1≤i≤n , T , `

Result: F
Learn h1 onZ
for 2 ≤ t ≤ T do

Compute (∀i ∈ [[1 · · ·n]]) ei = − ∂
∂ht−1(xi)

`(yi, ht−1(xi))

Build S̃ = {xi, ei}1≤i≤n
Learn g on Z̃

Compute λt = argmin
λ

 n∑
i=1

`
(
yi, ht−1(xi) + λg(xi)

)
Define ht = ht−1 + λtg

F = hT
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EXAMPLE
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