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Why Machine Learning

e Search engines

e Recommender systems

10BREAKTHROUGH
== TECHNOLOGIES 2013

o Automatic translation
e Speech understanding
e Game playing

e Self-driving cars

e Personalized medicine

e Progress in all sciences: genetics,
astronomy, chemistry, neurology, physics,...



What is Machine Learning ?

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E." Tom Mitchell (1997).

—> Learn to perform a task 1", based on experience E (examples) minimizing error & (or
maximizing performance P)

Often, we want to learn a function (model) fy with some model parameters 6 € R that
produces the right output y

A

0 = Argmin E(f5(E))

FE needs to be collected, cleaned, normalized, checked for data biases...



Inductive bias

Assumptions into the model = inductive bias b

e What should the model look like ?
o Perform logical combination of inputs: decision trees, linear models,...
o Memorize similar examples: KNN, SVM,...
o Approach probability distributions: Bayesian approaches
o "Reproduce” human brain : NN, DNN

o Hyperparameter settings (depth of tree, NN architecture, ..)

e Hypothesis on data distribution (E ~ N (0, 0?)..)

e Transfer knowledge from another domain

So...

0,b= Arg min E( fo(E))



Machine Learning vs. Statistics

o Historically been developed in different fields
o Mathematical foundations are partially equivalent.

o Both aim to make predictions of natural phenomena

ML models... Stats models

e Focus more on precise predictions o Assume data is generated

e Automate atask according to an understandable

e Assume that the data generation model

process is unknown e focus more on the ability to
interpret the patterns that
generated the data and the ability
to derive sound inference.



Taxonomy of Machine
Learning algorithms

Several criteria, non exhaustive and combinable

e Supervised or not
e |[ncremental or batch learning

e |nstance-based or model based

Tasks :

o Classification : group similar object in clusters

e Regression : predict a value [ vector



Taxonomy of Machine
Learning algorithms

Several criteria, non exhaustive and combinable

e Supervised or not
e |[ncremental or batch learning

e |nstance-based or model based
Tasks :

e Classification

e Regression

Unsupervised B Machine )
learning



Taxonomy: supervision

o Supervised algorithms: learn f from
labeled examples E = (X, y)

o Unsupervised algorithms: explore the
structure of F to extract meaningful
information

o Semi-Supervised algorithms: learn a model
from few labeled and many unlabeled
examples

e Reinforcement Learning: develop an agent
that improves its performance based on
interactions with the environment

Diagnostics

Unsupervised Supervised
Learning Learning

Clustering M ac h | ne Regression

Learning

Reinforcement
Learning

Prediction

Forecasting

Estimating



Supervised algorithms

o Known data: training/test set (fruits/labels)
Model : f

Input data: unknown data

Output data: label




Supervised algorithms

Workflow

e Learn f from a set of examples

e Make predictions using f

Preprocessing pipeline I:

Missing data handling

Initial feature extraction
and selection

[ Raw data collection ]

.

- l\;

Preprocessing pipeline 2:

=)

Feature scaling
Dimensionality reduction:

* Feature selection
* Feature extraction

»| Training dataset

& J
Vs

Processed

Hyperparameter choice + training

Ve N\
Iterate and evaluate Predictive model
via cross-validation L candidate )

training dataset
| J

!

4 . . \
Machine learning
algorithm

——

v

Final
| predictive model |

r

[ Test dataset ]

[ + Final preprocessing pipeline

Evaluate

[ New dataset ]

[ + Final preprocessing pipeline ]
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Supervised algorithms

K-nearest neighbors
An data point not in E is labeled based on the

value/class of its K nearest neighbors in the
feature space.

e classification : majority vote

e regression: mean value

and 3-NN (blue) decision rule

1-NN (red)
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Supervised algorithms

SVM /SVR

Maximization of a margin
min ||w||?
wcRd

Ww.r.t.

yi(WTxi) > 1,1 ¢ [[17”]]
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Supervised algorithms

Linear [ Logistic regression
Model: Find 6 such that || A8 — Y||?is

minimum = 6 = (ATA)"1ATY

o Classification: logit transform

e Regression: £: mean square error
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Supervised algorithms

Decision trees

e Process an object by means of a series of
tests on the attributes that describe it.

e Tests are organized in such a way that the
answer to one of them indicates the next
test to which the object must be submitted
—> Structuration of tests into a tree.

o Classification: individuals in a node

o Regression: mean value in a node

14



Supervised algorithms

Random forests

e Bagging algorithm + decorrelation criterion
between trees.

o Uses decision trees as partially independent
classifiers.

e Trains each decision tree on a sampling of &/
obtained by bootstrapping according to a

tree learning algorithm
o Classification: individuals in a node

o Regression: mean value in a node
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Supervised algorithms
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Neural networks

e Fully connected layers of neurons

e Memory stored in connections
(weights+bias)

e Learning algorithm (backpropagation)

e Shallow [ Deep
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Unupervised algorithms

e Unlabeled data F/, or data with unknown
structure :

o Explore the structure of the data to extract
information
o Clustering algorithm: organize
information into meaningful subgroups
(clusters)

o Data reduction/visualization : find an
intrinsic representation of the data
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Unsupervised algorithms

K-means and variants
Given (' initial points (class centers) g1 - - - ge:

1.Compute d(x, g,),Vx € E,j € [1,C]
2. Assign each x € F toits closest class center
3. Recompute class centers

4. lterate until convergence

—> Group data into clusters
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Unsupervised algorithms

Hierarchical clustering
Init: each £ € FE is a subset,

While (number of subsets>1)

1. Compute distances between all pairs of subsets
2. Merge the two closest subsets

—> Definition of a distance between subsets

.
L]
- 1 )
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Unsupervised algorithms

Mixture Models

e Claim: Data comes from a mixture of
distributions (usually Gaussian)

o Aim: estimate the parameters of the mixture

model by maximizing the likelihood of the
data
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Unsupervised algorithms

Data can be very high-dimensional and difficult
to understand, learn from, store,...

Dimension reduction

e Linear (ACP,.)

e Non linear (manifold learning)

—> Find intrinsic dimension of the data
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Reinforcement Learning

e Develop an agent that improves its
performance based on interactions with the
environment

e Search alarge space of actions and states

e Reward function defines how well a series of
actions works

e Learn a policy that maximizes reward
through exploration

/Environment

. P
R

¥

?':Agent

o Observe

Select action
using policy

o Action!

Get reward
or penalty

Update policy
{learning step)

Iterate until an

G optimal policy is
found
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Taxonomy of Machine Learning algorithms

Several criteria, non exhaustive and combinable

e Supervised or not
e |[ncremental or batch learning

e |nstance-based or model based
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Incremental [ Batch learning

Availability of data E:
e Yes: batch Learning
o time consuming
o offline training
o how to retrain if new data arrives ?

e No: online learning
o fast

o online

o interests: data flow/limited ressources
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Incremental [ Batch learning

When do we have to learn again ?

e too often: instability, sensitivity to outliers

e too rarely: no adaptation

= Learning rate

Loss

20

15 |

10 A1
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learning rate is too
low, loss function
doesn’'t improve

learning rate is too high,

I
I
|
|
I
I
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|
|
I
I
I
|
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I
I
|
|
|
|
I
|
|

optimal learning rate range
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Learning rate
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Taxonomy of Machine Learning algorithms

Several criteria, non exhaustive and combinable

e Supervised or not
-Incremental or batch learning

e |[nstance-based or model based
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Instance/Model based algorithms

1. Instance-based algorithm: only relying on the training set

e Easy tolearn by heart

e How to allow generalization ?
2. Model-based: use of a parametric model

e \What kind of model ?

e How to tune parameters ?

Feature 2 Feature 2 Model > %
A AN N\ A A \
— /\ L\ D D A A A \\
b s N A AAN

- AU 0O A A0
= Lot cmnpe [] A New instance A"

= A D A A A ¢

New instance D D U |:] ————— E_l o ,.E-]
] L [] [] O

{2

Feature 1



Summary

Learning = representation + evaluation + optimization
Machine learning algorithms consist of 3 components:

e Representation: a model fg,b must be represented in a formal language that the
computer can handle

o Defines the ‘concepts' it can learn, the hypothesis space

e FEvaluation: an internal way to choose one hypothesis over the others
o Error &, loss function,...

o Optimization: an efficient way to search the hypothesis space
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Summary

Example : Multilayer perceptron
e Representation:
o Fixed architecture

o Each neuron process o(w ' x)
= x input of the neuron

= w weight vector — @ = set of weights

= o activation function
o Each neuron is connected to all the neurons in the next layer
o fop: output of the last layer

e Evaluation: loss function ﬁ(fg,b) estimated on a training set

e Optimization: Find é, b minimizing L(fop) (e.g.gradient descent)

8 g
B3 ®
VAN SENISN N N
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Machine Learning Challenges

VIV
TAVAVAVA

Two things can go wrong

VAVAVAY,
AAAN

s
K
sl
==

VIVIVIA
AR

o Bad data
e Bad algorithms
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Bad data

Not enough data

e A child canlearn (and generalize) what is an
apple with only few examples

e A machine learning algorithm needs

thousands of examples

e Take care of imbalanced data

31



0.95
0.93 4
Bad data
5 0.85 .
Not enough data
Few data — a simple algorithm. o
T 0.80
Example: to-two disambiguation. ,
—— Memory-Based
0. 75 | = WLinnow
- Perceptron
——[Jalve Ddyes
0,40 : : . .
4y 1 19 100 1000

Millinne of Wards
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Bad data

More data is better than a cleverer method (but if you have both ...:-))

e More data reduces the chance of overfitting (see below...)
o Less sparse data reduces the curse of dimensionality (see below...)

e Non-parametric models: number of model parameters grows with amount of data
o can learn any model given sufficient data (but can get stuck in local minima)

o Parametric (fixed size) models: fixed number of model parameters
o Can be given a huge number of parameters to benefit from more data

o Deep learning models can have millions of weights, learn almost any function.

—> The bottleneck is moving from data to compute/scalability
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Bad data

Unrepresentative data

6o
Brazil  Mexico Chile Czech Republic e
S "
O ]
O
Y
\
=
O
v Norway  Switzerland Luxembourg
Q
O 27
0 1 L 1 I 1
0 20000 40000 60000 80000 100000
GDP per capita
—> Bias
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Bad data

Unrepresentative data

v i‘te- 1
L mn. a4

—> Bias
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Bad data

Poor quality data = Feature engineering

e Remove or correct outliers
e Handle missing values : ignore [ impute

Transform data: better data representation, better models

e Manage unsignificant features: selection/extraction/collection

Take care of the curse of dimensionality !

1: Raw data 2: Coordinate change 3: Better representation
y
Yo ® o y O
o e ©
°® ®
%® O0e®e
© o Og |
o O O o o 5 L X
) .
X X




Bad algorithms

Linear least square fitting of a set ¥ = (x, y) with a polynomial of order p € |2, 9].
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Bad algorithms
Overfitting / Underfitting

o Qverfitting: building a model that is too complex given the amount of data

o peculiarities in the training data (noise, biases,...)

o 100% accurate on the training data, but very bad on new data
— Solve by making model simpler (regularization), or getting more data

o There exists techniques for detecting overfitting (e.g. bias-variance analysis).

o Underfitting: building a model that is too simple given the complexity of the data
o Use a more complex model

—> Generalization capability
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Bad algorithms

Model selection

e No single algorithm is always best.

e Next to the error/loss function, need for an
external evaluation function
o Feedback signal: are we actually
learning the right thing?
= Are we under/overfitting?
o Carefully choose to fit the application.

o Needed to select between models (and
hyperparameter settings)

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE WRONG? )

JUST STIR THE PILE DNTIL
THEY START (OOKING RIGHT
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Bad algorithms

Model selection
b= Etrain U Etest
e Eiqin — training error e;
e F;..+ — generalization error €g
small e;

small e, generalizes, performs well

large ¢, fails to generalize, overfit

large e;
possible (luck or fraud?)

generalizes, but performs poorly
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Bad algorithms

Model selection

.
-

I Underfitting

Predictive
Error

\J

Overfitting

Error on Test Data

Error on Training Data

e — »

-

Model Complexity

+—>

Ideal Range

for Model Complexity
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Bad algorithms

Model selection

Double descent phenomenon

Interpolation
Threshold

Test Error
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Bad algorithms

Model selection

When the model includes hyperparameters, set aside part of training set as a validation set
E = Eirain U Eiest U By

e Firuin: training error

e F..: generalization error

e F ., hyperparameter optimization
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Bad algorithms

Model selection

e For a given hyperparameter setting, learn the
model parameters on the training set

e Evaluate the trained model on the validation

set
o Tune the hyperparameters to maximize
a certain metric (e.g. accuracy)

o Keep test set hidden during all training

Hyperparameter
tuning

O

O Best hyperparameters

Evaluation function

Validation set

Model training

@

O Model parameters

Loss function

Training set
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Bad algorithms

Model selection
Generalization must guide your process !
e Never evaluate the final model on E,4;,,, except for:

o Tracking whether the optimizer converges (learning curves)
o Diagnosing under/overfitting:

= High training and test error: underfitting

= |ow training error, high test error: overfitting

o Always keep a completely independent test set

o On small datasets, use multiple train-test splits to avoid sampling bias
(e.g. cross validation)
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Bad algorithms

Summary
Original dataset
v v
Training set Test set
v v
Training set Validation set Test set

Change hyperparameters
and repeat

Machine learning O

algorithm

Evaluate

Fit +

Predictive model p _
Final performance estimate
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Measuring performance

Going further than the test error...

Confusion
Matrix

Deterministic Scoring

Classifiers Classifiers

Graphical

Single-class
Measures

TP/FP Rate,
Precision, Recall, ROC Curves A der th
No Change Change Sensitivity, PR Curves rea under the
. . e s . curve
Correction Correction Specificity, Lift Charts H Meastre
Fi-Measure, Dice, Cost Curves
Accuracy Geometric Mean
Error Rate Chohen’s Kappa
Micro/Macro Fleiss’ Kappa
Average

credits: Sebastian Polsterl



Measuring performance

Example: binary classification problem (+/-) on N individuals using algorithm A:

e True Positive (TP) = + sample correctly classified as belonging to the + class
e False Positive (FP) = - sample misclassified as belonging to the + class
e True Negative (TN) = - sample correctly classified as belonging to the - class

o False Negative (FN) = + sample misclassified as belonging to the - class
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Measuring performance

Confusion matrix

True + True -

Predicted + TP FP (type | error (o))

Predicted - FN (typellerror (3)) TN

_ TP+TN _ TP
Accuracy = =—; Recall R = -3 g 1]1\1,3
Error rate 73 1-Accuracy Precision P = ngp

___F R
FPR = +p=7w Fi score: F| = S

Extension to multiple class: One vs. One/One vs. All

Predicted

(TN ) Negative Positve  { FP )
o — (’(- ﬁ?f SO
4, & ? y ﬂ
ative ‘i 2 6
; Preci
(e.g., 3¢
itive 5‘ - 5
5 H? S
. e
FN /J % {\ TP )

Recall —
(e.q.. 3 out of 5)
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Measuring performance

ROC curve

o Binary classifier returns probability or score
that represents the degree to which class an
example belongs to.

e The ROC curve plots R vs. FPR for all
possible thresholds of the A's score.

e Visualizes the trade-off between benefits
(R) and costs (FPR).

Area Under the Curve
=AUCE |0, 1| ~ probability that .4 will rank a
randomly chosen + instance higher than a

randomly chosen - instance (Mann-Whitney test)

VP

1.0

0.8

0.6

0.4 A

0.2 A

0.0

—— Reg. logistique (AUC = 0.9870)
—— SVC RBF (AUC = 0.9924)
—— SVC Linear (AUC = 0.9927)
Classification aléatoire
Idéal

T
0.0

T
0.2

T
0.4

FP

T
0.6

T T
0.8 1.0
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Measuring performance

ROC curve
Drawbacks:

e can present an overly optimistic view of A's performance if there is a large skew in the
class distribution (the data set contains much more samples of one class)

e Alarge change in the number of false positives can lead to a small change in the false
positive rate
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Measuring performance

1.0

P/R curve

0.9

e plots P vs. R for all possible thresholds of the A's score.

0.8

e P/R curve of optimal classifier is in the upper-right corner.

0.7

e One point in P/R space corresponds to a single confusion

©
o

matrix.

T T T | T |
0.0 0.2 0.4 0.6 0.8 1.0

e Algorithms that optimizes the AUC are not guaranteed to

Recall

optimize the area under the PR curve
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Measuring performance

And what about unsupervised methods ?

e Hard to evaluate since the ground truth is
not known ?

Silhouette Index
x; € cluster Py, and P; closest cluster of P

|pk1’_1 Z d(xia :Ej)'

OCLZ:

iEjEPk
1
¢ bz — . d(wivml)
| Pj] ZP
AASY o

e silhouette index of x; :
s; € [-1,1] = —ba

max(a;,b;)

Silhouette: 0.43

Silhouette: 0.60

Silhouette: 0.49

#

.
SiThoueties des

Silhouette: 0.34

L
ZEJJ.
:

. ‘opP” .

-
SiThoueties des

Silhouette: 0.35

-
SiThoueties des

SiThouettes des
2 classes

.
SiThouettes des
3 classes

4 classes

5 classes

8 classes

il

P

1

0

[=] Ll N ] ("]

o F N WA

QN W B O~
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Summary

e
P ]
K-mean Clustering, S, g &
Hierarchical Clustering, & o S 5\0\0
mixture models, Q% ° o oV s
Affinity Propagation, F\“\O(\ E
DBSCAN, xz
N f- d . [7)
OPTICS algorithm, fving cay b=
® @ Taks learning £
Reinforcement Dssin s &
: ey
/ Q«'Sto learning .;;o%g@ [ ]
Classif
<aty
(lassification
W\
M o
0%
&0
. Machi
‘ acnine ’ ,,,,, Supervised
learning

Unsupervised [EEEm.
learning

Reduction

Variance Thresholds, / )
Correlation Thresholds,
Principal Component Tral grfgnrt
Analysis (PCA), 9
Linear Discriminant

Analysis (LDA),
Deep Learning,

Decision Trees,
(Regularized) Logistic Regression,

Naive Bayes,
Support Vector Machines (SVM),

Deep learning,

e qigo®
X
roce

Least Squares Regression,
Logistic Regression,
Linear Regression,
Decision Trees,

Deep Learning,
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ML MAP (still evolvi

How much Data? ()

Ing)

) o

Using ETL ) Stratified
sampling

Sampling

Principal
Component

Google OpenRefine () Analysis I
AL

2
[ B ] e O ..Fealure_ DamSur\fey~

Extraction

. Mahout

Linear Regression .

Ranking .
.

Logistic Regression :
!'@‘

Regression

Classification

1. Fundamentals Prob Den Fn (POF) @) . [ ) .} _n . .
O won @ %, 2
5
Skewness .
Matrices & Linear Algebra Fundamentals .
Continuos Distributions .

‘u‘armal. Poisson, Gaussi
s Lists
Cumul Dist Fn (CDF) . Data Frames . .

Factors ()
. Randor Variables () ding CSV Data () .
Inner, Outer, Cross, Theta Join () Arays i)

Bayes Theorem . Reading Raw Data ()

Hash Functions, Binary Tree, O(n)

Relational Algebra, DB Basics .

CAP Theorem at .
atrices
Tabular Daf ® Probability Theory (i} Subsetting Data ()

Frames & Series () @ e Manipulate Vectors ()
é‘% Percentiles & Outliers . PR
Sharding . ) "l
Histograms () ,;‘szaf,— 4»7%)__ Functions (@ variables ®
s
LAP (@ Exploratory Data Analysis () &

Multidimensional Data Model (i} & escriptive Stafistics Expressions
PR .{mp_.m, median, range, SD, Var) R Bas .
asics
at . R Pick a Dataset

. ICI Repo) R Setup
R Studio

6. Visualization | O

&
F @ Data Exploration in R (Hist, Boxplot etc)

. Uni, Bi & Multivariate Viz

@ ooplorz

. Histogram & Pie (Uni)

) Tree & Tree Map
: 1t o 10, Toolbox
4. Machine Learning @ Scatter Plot (Bi)

. . . . . . Line Charts (Bi) . MS Excel w/ Analysis ToolPak

. Spatial Charts . Java, Python

@ survey Plot @ R R-Studio, Rattle

. Timeline . Weka, Knime, RapidMi
@ Hadoop Dist of Choice
. Spark, Storm

. Flume, Scibe, Chul
. Nutch, Talend, Scraperw;

. Webscraper, Flume, Sgoop

Rapid (@) Name & Data Nodes

Miner Storm: Hadoop () tm, RWeka, NLTK

Realtime
IBM Rhadoop, @ rHre
. SPSS . Data Replication Principles RHIPE

D3,js, ggplot2, Shiny
@ Hors @ o

. Hadoop Components . Cassandra

@ Mzp Reduce Fundamentals @ MongoDB, Neogj

. Setup Hadoop (1BM / Cloudera / HortonWol
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Statistical Learning Theory

Learning Model (Vapnik):

e A generator G of random vectors ¢ € D, i.i.d, P(:B) fixed but unknown

e A supervisor S giving for each input z a value y € C' drawned from P(y|x) fixed but
unknown

e A Learning Machine L M implementing a set of functions F
> Problem statement: Find f € F that best fit S.

Training set £ = {(x1,y1),-- -, (x;,y;) } l observations i.i.d from
P(z,y) = P (z)P (y|z)

> Problem statement: Find f : D — C'suchas R(f) = P (y # f(x)) is minimal.
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Statistical Learning Theory

Loss function

L (y, f (€)) = 1 yz 52, 0o (y — f())?or ...
Difference between S (y) and LM (f (x))
Risk (Error)

R(f) = / L(y,f(2))dP (z,y) = P(y # f (2))

= Expected value of the loss function = probability that f predicts a different value of S.

> Problem statement
Knowing FE, find f € F such that

f = Argmin R (g)
geF

57



Statistical Learning Theory

Minimum risk function
For classification problem, 9 a minimum risk function

fBa,yes (x) — A’I°g mya’XP (y’ﬂi)

fBa,yes "ldeal" function to reach (no hypothesis on the underlying distributions)

> Problem statement
Knowing E, approximate fBayes With f € F (a prioti fBayes & F)
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Statistical Learning Theory

Let suppose there exists fopt c JF of minimal risk:

0<R (fBayes) <R (fopt) = R (fBayes) +£R (fOpt) — R (fBayes)z

non-deterministic structural error

Choice of F:

e Using expressive F spaces to allow R (f(,pt) ~ R (fBa,yes)

e Not too rich, otherwise risk of overfitting

Joayes
% Rl
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Statistical Learning Theory

Empirical risk
Natural idea: find f € JF that best classify Ef

N _ Card{i|f (z:) # yi}
emp — 7 Z yzv wz — I

=Empirical Risk Minimization(ERM): Find f € F (femp) minimizing Rep,p (f)
R(femp)=R(fBayes)+(R(fopt) —R(fBayes)) +(B(femp) —R(fopt))

Joayes
8 _‘_q-_"“-_
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Statistical Learning Theory

One cannot expect to compute f,, is a reasonable time

— Approximation fapproz Of femp-

J%a}@s
+ R

>< Jg‘pf
.‘:X fémp

‘e Japprox
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Statistical Learning Theory

At least four reasons altering the results of a classfication method:

o Nature of the problem : minimum =- Bayes and can be important;
e Low expressivity of J : structural error;

e Non consistancy of ERM principle : do we get close to fopt with £/? (be careful:
learning by heart !!);

e Minimization can be computationaly hard/unstable.
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Statistical Learning Theory

Uniform convergence of the empirical risk
ERM does not necesseraly get close to rhe real risk (£ is randomly drawned)

—> Serious problem !

° foptCIOse to fbayes = rich F
e Tofind f,,: by ERM, F not toorich....

Extreme cases

o F = {fopt}: easytofind but probably high R,y

o F:setof all possible functions = fpques € F but also all f minimizing R, and in
particular fp neart-
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Variance

Low High

Statistical Learning Theory

Biais

e Biais ~ distance between fpqyes and fop:

e Variance ~ distance between f,,¢ and femp




Statistical Learning Theory

The Empirical risk uniformly converges (in probability) to the real risk in F iff

(Ve > 0) ZEI?OPT{MawaJ:‘Rl (f) —R(f)‘ >e} =0

emp
If the empirical risk uniformly converges to the real risk then a LM based on ERM converges
in probability to fopt:
lim Pr{|R (fln,) — R(fopt)| > €} =0

[—00 emp
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