Kernel methods

CONCLUSION OO

KERNEL METHODS

Kernel methods

CONCLUSION OO

INTRODUCTION

SVM

Notations Optimization Dual problem Interpretation Soft margin classification Multiclass SVM SVM: non linearly separable case

Kernel methods

Basis Incorporating Kernels in SVMs Examples

CONCLUSION

Kernel methods

CONCLUSION OO

INTRODUCTION

SVM

Notations Optimization Dual problem Interpretation Soft margin classification Multiclass SVM SVM: non linearly separable case

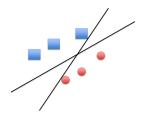
Kernel methods

Basis Incorporating Kernels in SVMs Examples

CONCLUSION

Kernel methods

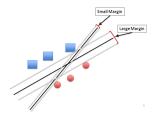
CONCLUSION OO



- Perceptron (and other linear classifiers) can lead to many equally valid choices for the decision boundary
- Are these really equally valid ?
- How can we pick which is best?

Kernel methods

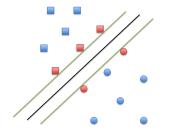
CONCLUSION OO



- Perceptron (and other linear classifiers) can lead to many equally valid choices for the decision boundary
- Are these really equally valid ?
- ► How can we pick which is best? → Maximize the size of the margin

Kernel methods

CONCLUSION OO



- Support Vectors are those input points (vectors) closest to the decision boundary
- decision problem: $w^T x + b = 0$

SVM ••••••••••••••••••••••••••••••• Kernel methods

CONCLUSION OO

INTRODUCTION

SVM

Notations Optimization Dual problem Interpretation Soft margin classification Multiclass SVM SVM: non linearly separable case

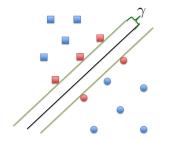
Kernel methods

Basis Incorporating Kernels in SVMs Examples

CONCLUSION

INTRODUCTION 00000 NOTATIONS SVM ••••••••• Kernel methods

CONCLUSION OO



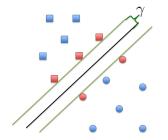
NOTATIONS

- ▶ x_i : data ; $y_i \in \{-1, 1\}$: labels
- decision hyperplane: $w^T x + b = 0$
- decision function : $f(x) = Sign(w^T x + b)$
- Margin hyperplanes: $w^T x + b = \pm \gamma$
- Scale invariance: $\lambda w^T x + \lambda b = 0.$

SCALING

This scaling does not change the decision hyperplane, or the support vector hyperplanes. \Rightarrow Margin hyperplanes: $w^Tx+b=\pm 1$ INTRODUCTION 00000 NOTATIONS SVM ••••••••• Kernel methods

CONCLUSION OO



NOTATIONS

- x_i : data ; $y_i \in \{-1, 1\}$: labels
- decision hyperplane: $w^T x + b = 0$
- decision function : $f(x) = Sign(w^T x + b)$
- Margin hyperplanes: $w^T x + b = \pm \gamma$
- Scale invariance: $\lambda w^T x + \lambda b = 0.$

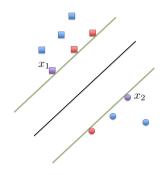
SCALING

This scaling does not change the decision hyperplane, or the support vector hyperplanes. \Rightarrow Margin hyperplanes: $w^Tx+b=\pm 1$ INTRODUCTION 00000 OPTIMIZATION SVM

Kernel methods

CONCLUSION OO

WHAT ARE WE OPTIMIZING ?



SIZE OF THE MARGIN

represented in terms of w.

1 identification of a decision boundary

2 maximization of the margin

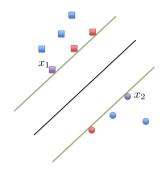
Relation Margin $\leftrightarrow w$

At least one point that lies on each support hyperplanes. $w^T x_1 + b = 1$ and $w^T x_2 + b = -1$ $\Rightarrow w^T (x_1 - x_2) = 2$ INTRODUCTION 00000 OPTIMIZATION

 Kernel methods

CONCLUSION OO

WHAT ARE WE OPTIMIZING ?



SIZE OF THE MARGIN

represented in terms of w.

identification of a decision boundary

² maximization of the margin

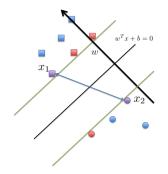
Relation margin $\leftrightarrow w$

At least one point that lies on each support hyperplanes. $w^T x_1 + b = 1$ and $w^T x_2 + b = -1$ $\Rightarrow w^T (x_1 - x_2) = 2$ INTRODUCTION SVM 00000 00000 OPTIMIZATION

Kernel methods

CONCLUSION OO

WHAT ARE WE OPTIMIZING ?



$$w^T(x_1 - x_2) = 2$$

w: orthogonal to the decision hyperplane
 margin: projection of x₁ - x₂ onto w,

PROJECTION

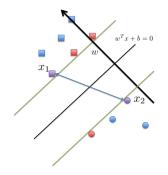
$$\begin{split} w^T(x_1 - x_2) &= 2 \\ \text{Projection: } \frac{w^T(x_1 - x_2)}{\|w\|} w \\ \text{Size of the margin: } \frac{2}{\|w\|} \end{split}$$

INTRODUCTION SVM 00000 0000000 OPTIMIZATION

Kernel methods

CONCLUSION OO

WHAT ARE WE OPTIMIZING ?



$$w^T(x_1 - x_2) = 2$$

w: orthogonal to the decision hyperplane
 margin: projection of x₁ - x₂ onto w,

PROJECTION

$$\begin{split} w^T(x_1 - x_2) &= 2\\ \text{Projection: } \frac{w^T(x_1 - x_2)}{\|w\|} w\\ \text{Size of the margin: } \frac{2}{\|w\|} \end{split}$$

Kernel methods

Conclusion 00

MAXIMIZING THE MARGIN

MAXIMIZATION

 $\begin{aligned} &Max \frac{2}{\|w\|}\\ &\text{subject to }\forall i \quad y_i(w^Tx_i+b) \geq 1 \end{aligned}$

MINIMIZATION

 $\begin{array}{ll} Min\|w\| \\ \text{subject to } \forall i \quad y_i(w^Tx_i+b) \geq 1 \end{array}$

LAGRANGIAN RELAXATION

$$L(w,b) = \frac{1}{2}w^{T}w - \sum_{i=1}^{N} \alpha_{i} \left[y_{i}(w^{T}x_{i} + b) - 1 \right]$$

Kernel methods

Conclusion 00

MAXIMIZING THE MARGIN

MAXIMIZATION

 $\begin{aligned} &Max \frac{2}{\|w\|}\\ &\text{subject to }\forall i \quad y_i(w^Tx_i+b) \geq 1 \end{aligned}$

MINIMIZATION

 $\begin{array}{ll} Min\|w\| \\ \text{subject to } \forall i \quad y_i(w^Tx_i+b) \geq 1 \end{array}$

LAGRANGIAN RELAXATION

$$L(w,b) = \frac{1}{2}w^{T}w - \sum_{i=1}^{N} \alpha_{i} \left[y_{i}(w^{T}x_{i} + b) - 1 \right]$$

Kernel methods

Conclusion 00

MAXIMIZING THE MARGIN

MAXIMIZATION

 $\begin{aligned} &Max \frac{2}{\|w\|}\\ &\text{subject to }\forall i \quad y_i(w^Tx_i+b) \geq 1 \end{aligned}$

MINIMIZATION

 $\begin{array}{ll} Min\|w\| \\ \text{subject to } \forall i \quad y_i(w^Tx_i+b) \geq 1 \end{array}$

LAGRANGIAN RELAXATION

$$L(w,b) = \frac{1}{2}w^{T}w - \sum_{i=1}^{N} \alpha_{i} \left[y_{i}(w^{T}x_{i} + b) - 1 \right]$$

INTRODUCTION	SVM
00000	00000 00000 000000000000000000000000000
DUAL PROBLEM	

Kernel methods

Conclusion 00

MAX MARGIN LOSS FUNCTION

PRIMAL PROBLEM

$$\begin{split} & \frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_i y_i = 0 \\ & \frac{\partial L}{\partial w} = 0 \Rightarrow w - \sum_{i=1}^{N} \alpha_i y_i x_i = 0 \end{split}$$

Kernel methods

CONCLUSION OO

DUAL PROBLEM

DUAL PROBLEM

Now have to find α_i : substitute back to the loss function

$$L(w,b) = \frac{1}{2}w^T w - \sum_{i=1}^N \alpha_i \left[y_i(w^T x_i + b) - 1 \right]$$
$$w = \sum_{i=1}^N \alpha_i y_i x_i$$
$$W(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j y_i y_j x_i^T x_j$$

where $\alpha_i \ge 0$ and $\sum_{i=1}^N \alpha_i y_i = 0$

INTRODUCTION SV 00000 00 DUAL PROBLEM

 Kernel methods

CONCLUSION OO

DUAL FORMULATION OF THE ERROR

PRIMAL PROBLEM

Optimize this quadratic program to identify the lagrange multipliers and thus the weights

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

where $\alpha_i \geq 0$

INTRODUCTION	
00000	
DUAL PROBLEM	

Kernel methods

CONCLUSION OO

SUPPORT VECTOR EXPANSION

$$\begin{aligned} (x) &= Sign(w^T x + b) \\ &= Sign\left(\left[\sum_{i=1}^N \alpha_i y_i x_i\right]^T x + b\right) \\ &= Sign\left(\left[\sum_{i=1}^N \alpha_i y_i x_i^T x\right] + b\right) \end{aligned}$$

 $\circ~$ When α_i is non-zero then x_i is a support vector $\circ~$ When α_i is zero x_i is not a support vector

Remark: $w = \sum_{i=1}^{N} \alpha_i y_i x_i$ Independent of the dimension of x_i

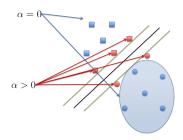
INTRODUCTION SVM

Kernel methods

Conclusion 00

DUAL PROBLEM

KUHN-TUCKER CONDITIONS



At the optimal solution $\alpha_i(1-y_i(w^Tx_i+b))=0$ If $\alpha_i\neq 0:y_i(w^Tx_i+b)=1$

 \Rightarrow Only points on the decision boundary contribute to the solution.

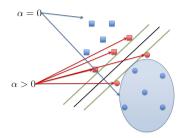
INTRODUCTION SVM

Kernel methods

CONCLUSION OO

DUAL PROBLEM

KUHN-TUCKER CONDITIONS



At the optimal solution $\alpha_i(1-y_i(w^Tx_i+b))=0$ If $\alpha_i\neq 0:y_i(w^Tx_i+b)=1$

 \Rightarrow Only points on the decision boundary contribute to the solution.

KERNEL METHODS

CONCLUSION OO

INTERPRETABILITY OF SVM PARAMETERS

- α_i large \Rightarrow the associated data point is quite important.
- It's either an outlier, or incredibly important

But this only gives us the best solution for linearly separable data sets

from sklearn.svm import LinearSVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
X, y = ...
svm = make_pipeline(StandardScaler(),LinearSVC(random_state=0, tol=1e-5))
svm.fit(X, y)

INTRODUCTION SVM 00000 0000 INTERPRETATION

KERNEL METHODS

Conclusion 00

LEARNING THEORY BASES OF SVMS

BOUNDS

Theoretical bounds on testing error:

- $\rightarrow\,$ The upper bound doesn't depend on the dim of the space
- $\rightarrow\,$ The lower bound is maximized by maximizing the margin associated with the decision boundary

PROPERTIES OF SVM

- ightarrow Good generalization capability
- \rightarrow Decision boundary is based on the data in the form of the support vectors \rightarrow easy to interpret
- → Principled bounds on testing error from Learning Theory (VC dimension)

INTRODUCTION SVM 00000 00000 INTERPRETATION

KERNEL METHODS

Conclusion 00

LEARNING THEORY BASES OF SVMS

BOUNDS

Theoretical bounds on testing error:

- $\rightarrow\,$ The upper bound doesn't depend on the dim of the space
- $\rightarrow\,$ The lower bound is maximized by maximizing the margin associated with the decision boundary

PROPERTIES OF SVM

- ightarrow Good generalization capability
- $\rightarrow\,$ Decision boundary is based on the data in the form of the support vectors $\rightarrow\,$ easy to interpret
- $\rightarrow\,$ Principled bounds on testing error from Learning Theory (VC dimension)

Kernel methods

Conclusion 00

SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

OUTLIERS

- There can be outliers on the other side of the decision boundary, or leading to a small margin.
- $\circ \Rightarrow$ Introduce a penalty term to the constraint function

NEW FUNCTION

$$Min\frac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i$$

S.C.

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

Kernel methods

Conclusion 00

SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

OUTLIERS

- There can be outliers on the other side of the decision boundary, or leading to a small margin.
- $\circ \Rightarrow$ Introduce a penalty term to the constraint function

NEW FUNCTION

$$Min\frac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i$$

s.c.

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

Kernel methods

Conclusion 00

SOFT MARGIN CLASSIFICATION

LAGRANGIAN

$$L(w,b) = \frac{1}{2}w^T w + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \left[y_i(w^T x_i + b) + \xi_i - 1 \right]$$

INTRODUCTION	SVM
00000	000000000000000000000000000000000000000
-	

Kernel methods

Conclusion 00

SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

NEW FUNCTION

$$Min\frac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i$$

s.c.

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

$$L(w, b) = \frac{1}{2}w^T w + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N \alpha_i \left[y_i(w^T x_i + b) + \xi_i - 1 \right]$$

Kernel methods

Conclusion 00

SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

STILL QUADRATIC PROGRAMMING

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} y_i y_j \alpha_i \alpha_j x_i^T x_j$$

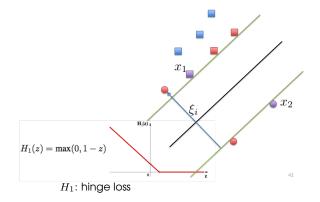
where
$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^N \alpha_i y_i = 0$$

Kernel methods

CONCLUSION OO

SOFT MARGIN EXAMPLE



from sklearn.sym import SVC
from sklearn.pipeline import make_pipeline
from sklearn.piperporessing import StandardScaler
X, y = ...
sym = make_pipeline(StandardScaler(), SVC(random_state=0, tol=1e-5))
sym.fit(X, y)

INTRODUCTION	
00000	
MULTICLASS SVM	

Kernel methods

Multiclass

So far, binary classification problem. What about multiclass?

Key ideas

- Decompose into multiple binary classification problems
- Make a final decision based on these binary classifiers

Two strategies

- One versus all
- One versus one

INTRODUCTION 00000 MULTICLASS SVM SVM

Kernel methods

CONCLUSION OO

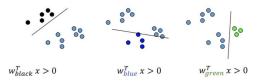
One vs all

For C classes, decompose into C binary classification problems For problem c:

- ▶ positive examples: x_i such that $y_i = c$
- negative examples: all others elements.

Inference: Winner takes all: for an example x

$$\hat{c} = \arg \max_{c \in [\![1,c]\!]} w_c^T x$$



INTRODUCTION 00000 MULTICLASS SVM

 Kernel methods

One vs one

For C classes, decompose into C(C + 1)/2 binary classification problems For each class pair (k,l):

Training

- positive examples: x_i such that $y_i = k$
- negative examples: x_i such that $y_i = l$.

Inference: Majority.

INTRODUCTION
00000
MULTICLASS SVM

SVM

KERNEL METHODS

CONCLUSION OO

One vs all

- Assumption: each class individully separable from the others
- No theoretical justification
- Easy to implement
- Unbalanced classes
- Works well in practice

One vs one

- If class sizes are small, possible overfitting
- Need large memory to store models

These methods are applicable to any binary classifier.

Kernel methods

CONCLUSION OO

SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

- $\rightarrow\,$ So far, support vector machines can only handle linearly separable data
- \rightarrow But most data isn't.
- $\rightarrow\,$ We already see how to deal with this problem: soft margin
- \rightarrow Now: another solution...

SVM

Kernel methods

CONCLUSION OO

SVM: NON LINEARLY SEPARABLE CASE

\mathbf{SVM} : Non linearly separable case

 \rightarrow Points that are not linearly separable in 2 dimension ...

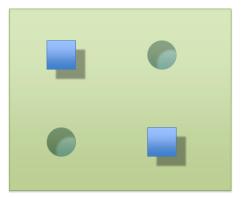
SVM

Kernel methods

CONCLUSION OO

SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE



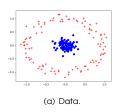
→ Points that are not linearly separable in 2 dimension, might be linearly separable in 3. Kernel methods

CONCLUSION OO

SVM: NON LINEARLY SEPARABLE CASE

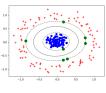
SVM: NON LINEARLY SEPARABLE CASE

Another example





(b) 3D Mapping (RBF).



(c) Classification.

Kernel methods

Conclusion 00

INTRODUCTION

SVM

Notations Optimization Dual problem Interpretation Soft margin classification Multiclass SVM SVM: non linearly separable case

Kernel methods

Basis Incorporating Kernels in SVMs Examples

CONCLUSION

Kernel methods

Conclusion 00

BASIS OF KERNEL METHODS

RECALL...

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j \ w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

AND THEN...

- \rightarrow The decision process doesn't depend on the dimensionality of the data.
- ightarrow We can map to a higher dimensionality of the data space.
- \rightarrow data points only appear within a dot product.
- \rightarrow The error is based on the dot product of data points, not the data points themselves.

INTRODUCTION	SVM
00000	000000000000000000000000000000000000000
BASIS	

Kernel methods

Conclusion 00

BASIS OF KERNEL METHODS

RECALL...

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j \ w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

AND THEN...

- $\rightarrow\,$ The decision process doesn't depend on the dimensionality of the data.
- \rightarrow We can map to a higher dimensionality of the data space.
- \rightarrow data points only appear within a dot product.
- $\rightarrow\,$ The error is based on the dot product of data points, not the data points themselves.

Kernel methods

CONCLUSION OO

BASIS OF KERNEL METHODS

AND SO...

How to add dimensionality to the data in order to make it linearly separable ?

- $\circ~$ Extreme case: construct a dimension for each data point \Rightarrow overfitting
- Mapping: $x_i^T x_j \leftrightarrow \phi(x_i)^T \phi(x_j)$

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)$$

INTRODUCTION 00000 BASIS CONCLUSION OO

WHY DUAL FORMULATION ?

UNTRACTABLE EXAMPLE

$$\phi(x_0, x_1) = (x_0^2, x_0 x_1, x_1 x_0, x_1^2)$$

applied to a 20x30 image of 600 pixels \approx 180000 dimensions ! Would be computationally infeasible to work in this space

DUAL PROBLEM

- $\circ \alpha_i$: dual variables
- Since any component orthogonal to the space spanned by the training data has no effect, general result that weight vectors have dual representation: the representer theorem.
- can reformulate algorithms to learn dual variables rather than weight vector directly

INTRODUCTION 00000 BASIS Kernel methods

CONCLUSION OO

WHY DUAL FORMULATION ?

UNTRACTABLE EXAMPLE

$$\phi(x_0, x_1) = (x_0^2, x_0 x_1, x_1 x_0, x_1^2)$$

applied to a 20x30 image of 600 pixels \approx 180000 dimensions ! Would be computationally infeasible to work in this space

DUAL PROBLEM

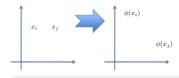
- α_i : dual variables
- Since any component orthogonal to the space spanned by the training data has no effect, general result that weight vectors have dual representation: the representer theorem.
- can reformulate algorithms to learn dual variables rather than weight vector directly

 CONCLUSION OO

KERNELS

- 1 We can represent this dot product as a Kernel (Kernel Function, Kernel Matrix)
- ² Finite (if large) dimensionality of $K(x_i, x_j)$ unrelated to dimensionality of x

REMEMBER THE DUAL



Kernels are a mapping

$$x_i^T x_j \leftrightarrow \phi(x_i)^T \phi(x_j)$$

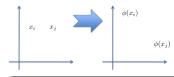
$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

 CONCLUSION OO

KERNELS

- 1 We can represent this dot product as a Kernel (Kernel Function, Kernel Matrix)
- ² Finite (if large) dimensionality of $K(x_i, x_j)$ unrelated to dimensionality of x

REMEMBER THE DUAL



Kernels are a mapping

$$x_i^T x_j \leftrightarrow \phi(x_i)^T \phi(x_j)$$

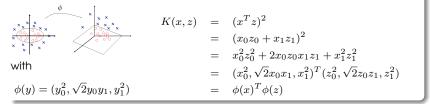
$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

KERNEL METHODS

CONCLUSION OO

Gram Matrix: $K_{ij} = K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

FIRST EXAMPLE



Kernel methods

Conclusion 00

BASIS

Gram Matrix: $K_{ij} = K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

 ${\bf Second \ example}$

 $\begin{array}{l} \phi: x\in X\to \phi(x)\in \mathcal{F}\\ (x,y)\mapsto (x_0^2,x_0x_1,x_1x_0,x_1^2)\\ \text{Linear equation in }\mathcal{F}~ax_0^2+bx_1^2=c\to \text{ellipse (non linear shape) in }X \end{array}$

INTRODUCTION 00000 BASIS Kernel methods

CONCLUSION OO

CAPACITY OF FEATURE SPACES

The capacity is proportional to the dimension

THEOREM

Given m + 1 examples in general position in a m-dimensional space, every possible classification can be generated with a thresholded linear function

Extension: Cover's theorem

- Capacity may easily become too large and lead to over-fitting: being able to realise every classifier means unlikely to generalise well
- Computational costs involved in dealing with large vectors

 CONCLUSION OO

KERNELS

- $\circ~$ In general: don't need to know the form of $\phi.$
- Just specifying the kernel function is sufficient.
- A good kernel: Computing K_{ij} is cheaper than $\phi(x_i)$

VALID KERNELS

- Symmetric
- Must be decomposable into ϕ functions
- Harder to show.
 - Gram matrix is positive semi-definite
 - Positive entries are definitely positive semi-definite.
 - Negative entries may still be positive semi-definite

$$x^TKx \geq 0$$

 CONCLUSION OO

KERNELS

- $\circ\,$ In general: don't need to know the form of $\phi.$
- Just specifying the kernel function is sufficient.
- \circ A good kernel: Computing K_{ij} is cheaper than $\phi(x_i)$

VALID KERNELS

- Symmetric
- \circ Must be decomposable into ϕ functions
- Harder to show.
 - Gram matrix is positive semi-definite
 - Positive entries are definitely positive semi-definite.
 - Negative entries may still be positive semi-definite

$$x^T K x \ge 0$$

 CONCLUSION OO

EXAMPLES

K, K' Kernel $\Rightarrow cK, K + K', K.K', exp(K)...$ Examples: Polynomial kernels, RBF, String kernels, graph kernels Note: a SVM model using a sigmoid kernel function is equivalent to a two-layer, perceptron neural network. INTRODUCTION SVM

KERNEL METHODS

_

CONCLUSION

INCORPORATING KERNELS IN SVMS

INCORPORATING KERNELS IN SVMS

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)$$
$$= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

 \circ optimize the α_i and b w.r.t. K

$$\circ~ \mbox{decision function } f(x) = sign\left[\sum_{i=1}^N \alpha_i y_i K(x,x_i) + b\right]$$

INTRODUCTION 00000 Examples Kernel methods

CONCLUSION OO

EXAMPLES

POLYNOMIAL KERNELS

 $K(x,z) = (x^Tz + \theta)^d \quad \theta \geq 0$

- dot product: polynomial power of the original dot product.
- $\circ c \text{ large} \Rightarrow \text{focus on linear terms}$
- $\circ c \text{ small} \Rightarrow \text{focus on higher order terms}$
- Very fast to calculate

RBF

$K(x,z) = e^{\frac{||x-z||^2}{2\sigma^2}}$

- dot product: related to the distance in space between the two points.
- Placing a bump on each point

from sklearn.svm import SVC X, y = ... Xrrain, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=7rue, random_state=0) rbf=SV(Kernel=*poly*, degree4, cof0=0.5, col}.fit(X_train, y_train) poly = SV(Kernel=*poly*, degree4, cof0=0.5, col}.fit(X_train, y_train) INTRODUCTION 00000 Examples Kernel methods

CONCLUSION OO

EXAMPLES

POLYNOMIAL KERNELS

 $K(x,z) = (x^Tz + \theta)^d \quad \theta \geq 0$

- dot product: polynomial power of the original dot product.
- $\circ c \text{ large} \Rightarrow \text{focus on linear terms}$
- $\circ c \text{ small} \Rightarrow \text{focus on higher order terms}$
- Very fast to calculate

RBF

$$K(x,z) = e^{\frac{\|x-z\|^2}{2\sigma^2}}$$

- dot product: related to the distance in space between the two points.
- Placing a bump on each point

INTRODUCTION 00000 Examples Kernel methods

CONCLUSION OO

EXAMPLES

STRING KERNELS

Not a gaussian, but still a legitimate Kernel

- $\circ~K(s,s')$ = difference in length,count of different letters, minimum edit distance
- allow for infinite dimensional inputs
- don't need to manually encode the input

INTRODUCTION 00000 EXAMPLES Kernel methods

CONCLUSION OO

EXAMPLES

GRAPH KERNELS

- Define the kernel function based on graph properties
- must be computable in poly-time (paths, spanning trees, cycles, bag of paths...)
- Possible incorporation of knowledge about the input without direct feature extraction

Kernel methods

CONCLUSION •O

INTRODUCTION

SVM

Notations Optimization Dual problem Interpretation Soft margin classification Multiclass SVM SVM: non linearly separable case

Kernel methods

Basis Incorporating Kernels in SVMs Examples

CONCLUSION

Kernel methods

TO CONCLUDE: KERNEL TRICK

To conclude (Kernel trick) : a kernel can be applied where a dot product is used in an optimization:

- Kernel PCA
- Kernel perceptron
- unsupervised clustering (similarity \approx distance \leftrightarrow dot product)