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I Perceptron (and other linear
classifiers) can lead to many equally
valid choices for the decision
boundary

I Are these really equally valid ?
I How can we pick which is best?
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I Perceptron (and other linear
classifiers) can lead to many equally
valid choices for the decision
boundary

I Are these really equally valid ?
I How can we pick which is best?
→ Maximize the size of the margin
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I Support Vectors are those input
points (vectors) closest to the
decision boundary

I decision problem: wT x+ b = 0
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NOTATIONS

NOTATIONS
I xi: data ; yi ∈ {−1, 1}: labels
I decision hyperplane: wT x+ b = 0

I decision function : f(x) = Sign(wT x+ b)

I Margin hyperplanes: wT x+ b = ±γ
I Scale invariance: λwT x+ λb = 0.

SCALING

This scaling does not change the decision hyperplane, or the support vector
hyperplanes. ⇒ Margin hyperplanes: wT x+ b = ±1
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OPTIMIZATION

WHAT ARE WE OPTIMIZING ?

SIZE OF THE MARGIN

represented in terms of w.

1 identification of a decision boundary

2 maximization of the margin

RELATION MARGIN ↔ w

At least one point that lies on each support
hyperplanes. wT x1 + b = 1 and wT x2 + b = −1
⇒ wT (x1 − x2) = 2
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OPTIMIZATION

WHAT ARE WE OPTIMIZING ?

wT (x1 − x2) = 2

1 w: orthogonal to the decision hyperplane

2 margin: projection of x1 − x2 onto w,

PROJECTION

wT (x1 − x2) = 2

Projection: wT (x1−x2)
‖w‖ w

Size of the margin: 2
‖w‖
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OPTIMIZATION

MAXIMIZING THE MARGIN

MAXIMIZATION

Max 2
‖w‖

subject to ∀i yi(w
T xi + b) ≥ 1

MINIMIZATION

Min‖w‖
subject to ∀i yi(w

T xi + b) ≥ 1

LAGRANGIAN RELAXATION

L(w, b) =
1

2
wTw −

N∑
i=1

αi

[
yi(w

T xi + b)− 1
]
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DUAL PROBLEM

MAX MARGIN LOSS FUNCTION

PRIMAL PROBLEM

∂L
∂b

= 0⇒
N∑
i=1

αiyi = 0

∂L
∂w

= 0⇒ w −
N∑
i=1

αiyixi = 0
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DUAL PROBLEM

DUAL PROBLEM

DUAL PROBLEM

Now have to find αi: substitute back to the loss function

L(w, b) = 1
2
wTw −

N∑
i=1

αi

[
yi(w

T xi + b)− 1
]

w =
N∑
i=1

αiyixi

W (α) =
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj

where αi ≥ 0 and
∑N

i=1 αiyi = 0
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DUAL PROBLEM

DUAL FORMULATION OF THE ERROR

PRIMAL PROBLEM

Optimize this quadratic program to identify the lagrange multipliers and thus
the weights

W (α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj

where αi ≥ 0
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DUAL PROBLEM

SUPPORT VECTOR EXPANSION

f(x) = Sign(wT x+ b)

= Sign

[ N∑
i=1

αiyixi

]T
x+ b


= Sign

([
N∑
i=1

αiyix
T
i x

]
+ b

)

◦ When αi is non-zero then xi is a support vector
◦ When αi is zero xi is not a support vector

Remark: w =
N∑
i=1

αiyixi Independent of the dimension of xi
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DUAL PROBLEM

KUHN-TUCKER CONDITIONS

AT THE OPTIMAL SOLUTION

αi(1− yi(wT xi + b)) = 0

If αi 6= 0 : yi(wT xi + b) = 1

⇒ Only points on the decision boundary contribute to the solution.
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INTERPRETATION

INTERPRETABILITY OF SVM PARAMETERS

I αi large⇒ the associated data point is quite important.
I It’s either an outlier, or incredibly important

But this only gives us the best solution for linearly separable data sets
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INTERPRETATION

LEARNING THEORY BASES OF SVMS

BOUNDS

Theoretical bounds on testing error:

→ The upper bound doesn’t depend on the dim of the space
→ The lower bound is maximized by maximizing the margin associated

with the decision boundary

PROPERTIES OF SVM
→ Good generalization capability
→ Decision boundary is based on the data in the form of the support

vectors→ easy to interpret
→ Principled bounds on testing error from Learning Theory (VC

dimension)
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SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

OUTLIERS

◦ There can be outliers on the other side of the decision boundary, or
leading to a small margin.

◦ ⇒ Introduce a penalty term to the constraint function

NEW FUNCTION

Min
1

2
wTw + C

N∑
i=1

ξi

s.c.

yi(w
T xi + b) ≥ 1− ξi

ξi ≥ 0
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SOFT MARGIN CLASSIFICATION

LAGRANGIAN

L(w, b) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi

[
yi(w

T xi + b) + ξi − 1
]
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SOFT MARGIN CLASSIFICATION

SOFT MARGIN CLASSIFICATION

STILL QUADRATIC PROGRAMMING

W (α) =
N∑
i=1

αi −
1

2

N∑
i,j=1

yiyjαiαjx
T
i xj

where 0 ≤ αi ≤ C
N∑
i=1

αiyi = 0
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SOFT MARGIN CLASSIFICATION

SOFT MARGIN EXAMPLE

H1: hinge loss
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MULTICLASS SVM

Multiclass

So far, binary classification problem. What about multiclass ?

Key ideas

I Decompose into multiple binary classification problems
I Make a final decision based on these binary classifiers

Two strategies

I One versus all
I One versus one
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MULTICLASS SVM

One vs all

For C classes, decompose into C binary classifica-
tion problems
For problem c:
I positive examples: xi such that yi = c

I negative examples: all others elements.

Inference: Winner takes all: for an example x

ĉ = arg max
c∈[[1,c]]

wT
c x
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MULTICLASS SVM

One vs one

For C classes, decompose into C(C + 1)/2 binary
classification problems
For each class pair (k,l):
I positive examples: xi such that yi = k

I negative examples: xi such that yi = l.

Inference: Majority.
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MULTICLASS SVM

One vs all

I Assumption: each class individully separable from the others
I No theoretical justification
I Easy to implement
I Unbalanced classes
I Works well in practice

One vs one

I If class sizes are small, possible overfitting
I Need large memory to store models

These methods are applicable to any binary classifier.
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SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

→ So far, support vector machines can only
handle linearly separable data

→ But most data isn’t.
→ We already see how to deal with this problem:

soft margin
→ Now: another solution...
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SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

→ Points that are not linearly
separable in 2 dimension ..
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SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

→ Points that are not linearly
separable in 2 dimension,
might be linearly separable in
3.
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SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

Another example

(a) Data. (b) 3D Mapping (RBF). (c) Classification.
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BASIS

BASIS OF KERNEL METHODS

RECALL...

W (α) =
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj w =

N∑
i=1

αiyixi

AND THEN...
→ The decision process doesn’t depend on the dimensionality of the

data.
→ We can map to a higher dimensionality of the data space.
→ data points only appear within a dot product.
→ The error is based on the dot product of data points, not the data

points themselves.
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BASIS

BASIS OF KERNEL METHODS

AND SO...
How to add dimensionality to the data in order to make it linearly separable ?

◦ Extreme case: construct a dimension for each data point⇒ overfitting
◦ Mapping: xTi xj ↔ φ(xi)

Tφ(xj)

W (α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjφ(xi)
Tφ(xj)
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BASIS

WHY DUAL FORMULATION ?

UNTRACTABLE EXAMPLE

φ(x0, x1) = (x20, x0x1, x1x0, x
2
1)

applied to a 20x30 image of 600 pixels ≈ 180000 dimensions ! Would be
computationally infeasible to work in this space

DUAL PROBLEM

◦ αi: dual variables
◦ Since any component orthogonal to the space spanned by the

training data has no effect, general result that weight vectors have
dual representation: the representer theorem.
◦ can reformulate algorithms to learn dual variables rather than weight

vector directly
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BASIS

KERNEL

KERNELS

1 We can represent this dot product as a Kernel (Kernel Function, Kernel
Matrix)

2 Finite (if large) dimensionality of K(xi, xj) unrelated to dimensionality of x

REMEMBER THE DUAL

Kernels are a mapping

xTi xj ↔ φ(xi)
Tφ(xj)

K(xi, xj) = φ(xi)
Tφ(xj)
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BASIS

KERNEL

Gram Matrix: Kij = K(xi, xj) = φ(xi)
Tφ(xj)

FIRST EXAMPLE

with

φ(y) = (y20 ,
√
2y0y1, y

2
1)

K(x, z) = (xT z)2

= (x0z0 + x1z1)
2

= x20z
2
0 + 2x0z0x1z1 + x21z

2
1

= (x20,
√
2x0x1, x

2
1)

T (z20 ,
√
2z0z1, z

2
1)

= φ(x)Tφ(z)
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BASIS

Gram Matrix: Kij = K(xi, xj) = φ(xi)
Tφ(xj)

SECOND EXAMPLE

φ : x ∈ X → φ(x) ∈ F
(x, y) 7→ (x20, x0x1, x1x0, x

2
1)

Linear equation in F ax20 + bx21 = c→ ellipse (non linear shape) in X
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BASIS

CAPACITY OF FEATURE SPACES

The capacity is proportional to the dimension

THEOREM

Given m+ 1 examples in general position in a m-dimensional space, every
possible classification can be generated with a thresholded linear function

Extension: Cover’s theorem
I Capacity may easily become too large and lead to over-fitting: being

able to realise every classifier means unlikely to generalise well
I Computational costs involved in dealing with large vectors
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BASIS

KERNEL

KERNELS

◦ In general: don’t need to know the form of φ.
◦ Just specifying the kernel function is sufficient.
◦ A good kernel: Computing Kij is cheaper than φ(xi)

VALID KERNELS

◦ Symmetric
◦ Must be decomposable into φ functions
◦ Harder to show.

I Gram matrix is positive semi-definite
I Positive entries are definitely positive semi-definite.
I Negative entries may still be positive semi-definite

xTKx ≥ 0
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BASIS

KERNEL

EXAMPLES

K,K′ Kernel⇒ cK,K +K′,K.K′, exp(K)...
Examples: Polynomial kernels, RBF, String kernels, graph kernels
Note: a SVM model using a sigmoid kernel function is equivalent to a two-layer,
perceptron neural network.
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INCORPORATING KERNELS IN SVMS

INCORPORATING KERNELS IN SVMS

W (α) =
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjφ(xi)
Tφ(xj)

=
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj)

◦ optimize the αi and b w.r.t. K

◦ decision function f(x) = sign

[
N∑
i=1

αiyiK(x, xi) + b

]
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EXAMPLES

EXAMPLES

POLYNOMIAL KERNELS

K(x, z) = (xT z + θ)d θ ≥ 0

◦ dot product: polynomial power of the original dot product.
◦ c large⇒ focus on linear terms
◦ c small⇒ focus on higher order terms
◦ Very fast to calculate

RBF

K(x, z) = e
‖x−z‖2

2σ2

◦ dot product: related to the distance in space between the two points.
◦ Placing a bump on each point
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EXAMPLES

EXAMPLES

STRING KERNELS

Not a gaussian, but still a legitimate Kernel

◦ K(s, s′) = difference in length,count of different letters, minimum edit
distance

◦ allow for infinite dimensional inputs
◦ don’t need to manually encode the input
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EXAMPLES

EXAMPLES

GRAPH KERNELS

◦ Define the kernel function based on graph properties
◦ must be computable in poly-time (paths, spanning trees, cycles, bag

of paths...)
◦ Possible incorporation of knowledge about the input without direct

feature extraction
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TO CONCLUDE: KERNEL TRICK

To conclude (Kernel trick) : a kernel can be applied where a dot product is
used in an optimization:
I Kernel PCA
I Kernel perceptron
I unsupervised clustering (similarity ≈ distance↔ dot product)
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