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» Perceptron (and other linear
classifiers) can lead to many equally
valid choices for the decision
boundary

» Are these really equally valid ?

» How can we pick which is best?
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» Perceptron (and other linear
_SmaIIMar in o
7g classifiers) can lead to many equally
Lerge Margin valid choices for the decision

- % boundary
- - / > Are these really equally valid ?

® » How can we pick which is best?
/° — Maximize the size of the margin
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» Support Vectors are those input
points (vectors) closest to the
decision boundary

» decision problem: wlz +b =0
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NOTATIONS

NOTATIONS

> z;: data; y; € {—1,1}: labels
decision hyperplane: wTz +b =0
decision function : f(z) = Sign(wTx + b)
Margin hyperplanes: w”z +b = 4
Scale invariance: Aw™z + \b = 0.
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NOTATIONS

NOTATIONS
> z;: data; y; € {—1,1}: labels
» decision hyperplane: wlz +b =10
» decision function : f(x) = Sign(wTz + b)
> Margin hyperplanes: w’z + b = £~
» Scale invariance: AwTz + \b = 0.

SCALING

This scaling does not change the decision hyperplane, or the support vector
hyperplanes. = Margin hyperplanes: w’z + b = +1
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OPTIMIZATION

WHAT ARE WE OPTIMIZING ?

- SIZE OF THE MARGIN
=] represented in ferms of w.
identification of a decision boundary

T maximization of the margin
2

e

9/45



INTRODUCTION SVM KERNEL METHODS CONCLUSION
00000 000000000000 0000O0OO0O0000 0000000000000 [e]e]
OPTIMIZATION

WHAT ARE WE OPTIMIZING ?

- SIZE OF THE MARGIN
=] represented in ferms of w.
identification of a decision boundary
maximization of the margin

e

¢ RELATION MARGIN <> w

At least one point that lies on each support
hyperplanes. wlz; +b=1and wlazs +b= —1
= wT(ml —x2) =2

v
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WHAT ARE WE OPTIMIZING ?

’LUT(CCl — IQ) =2
w: orthogonal to the decision hyperplane

margin: projection of z; — x2 onto w,
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WHAT ARE WE OPTIMIZING ?

’LUT(.Il — Ig) =2

w: orthogonal to the decision hyperplane

margin: projection of z; — x2 onto w,

CONCLUSION
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PROJECTION

wT (x1 — x2) =2
. . T(xy—z2)
Projection; ¥TL-%2),,
[[w]] )

Size of the margin: Tl
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subjectto Vi y;(wTz; +b) > 1
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MINIMIZATION

Min||w||
subjectto Vi y;(wTz; +b) > 1
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OPTIMIZATION

MAXIMIZING THE MARGIN

MAXIMIZATION

Max 2
[l

subjectto Vi y;(wTz; +b) > 1

MINIMIZATION

Min||w||
subjectto Vi y;(wTz; +b) > 1

LAGRANGIAN RELAXATION

N
L(w,b) = %wT'w - Zai [yi(wTa:i +b) — 1]

=1
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MAX MARGIN LOSS FUNCTION

PRIMAL PROBLEM

N
oL
2L 03 o =0
i=1
N
% =O:>w—Zaiyimi:O
=1
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DUAL PROBLEM

DUAL PROBLEM
Now have to find az substitute back to the loss function

L(w,b) = —'w w— Zaz [yzw xl—i-b)—l]
N
W= iyt
i=1
Zal - = Z QoYY T T

1,j=1

where a; > 0and YN | iy =0
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DUAL PROBLEM

DUAL FORMULATION OF THE ERROR

PRIMAL PROBLEM
Optimize this quadratic program to identify the lagrange multipliers and thus

the weights
N 1 X
W(a) = Zai -3 Z oziajyiij?arj
i=1 ij=1

where a; > 0
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SUPPORT VECTOR EXPANSION

fx) = Sign(wTz+b)
N T
= Sign [Z a;yixi| xz+b
i=1

N
Sign ( [Z ociyixiTx

=1

)

o When «; is non-zero then z; is a support vector
o When «; is zero x; is not a support vector
N
Remark: w = »  a,y;z; Independent of the dimension of
=1

CONCLUSION

[e]e]
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DUAL PROBLEM

KUHN-TUCKER CONDITIONS

AT THE OPTIMAL SOLUTION
a;(1— yi(wT:v,- +0)=0
Ifa; #0: y(wla; +b) =1
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DUAL PROBLEM

KUHN-TUCKER CONDITIONS

AT THE OPTIMAL SOLUTION
a;i(1—y;(wlz; +b) =0

Ifa; #0: y(wla; +b) =1

= Only points on the decision boundary contribute to the solution.
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INTERPRETABILITY OF SVM PARAMETERS

> «; large = the associated data point is quite important.
> [|t's either an outlier, or incredibly important

But this only gives us the best solution for linearly separable data sets

from sklearn.svm import LinearSVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

X,y
svm = ( O, (random_state=0, tol=1le-5))
svm. fit(X, y)

CONCLUSION

[e]e]
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INTERPRETATION

LEARNING THEORY BASES OF SVMS

BoOUNDS

Theoretical bounds on testing error:
— The upper bound doesn’t depend on the dim of the space
— The lower bound is maximized by maximizing the margin associated
with the decision boundary
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INTERPRETATION

LEARNING THEORY BASES OF SVMS

BoOUNDS

Theoretical bounds on testing error:
— The upper bound doesn’t depend on the dim of the space
— The lower bound is maximized by maximizing the margin associated
with the decision boundary

PROPERTIES OF SVM

— Good generalization capability

— Decision boundary is based on the data in the form of the support
vectors — easy to interpret

— Principled bounds on testing error from Learning Theory (VC
dimension)

18/45
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SOFT MARGIN CLASSIFICATION

OUTLIERS

o There can be outliers on the other side of the decision boundary, or
leading to a small margin.
o = Infroduce a penalty term to the constraint function
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SOFT MARGIN CLASSIFICATION

OUTLIERS

o There can be outliers on the other side of the decision boundary, or
leading to a small margin.
o = Infroduce a penalty term to the constraint function

NEW FUNCTION

N
o1
Mm?wTw—i-CZEi
=1
S.C.
T
yi(w z; +b) > 1-§&
& > 0
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SOFT MARGIN CLASSIFICATION
LAGRANGIAN
L(’w,b) = lew + Ci{z — %ai I:yi(wai —+ b) + & — 1]
2 =1 =1
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SOFT MARGIN CLASSIFICATION

NEW FUNCTION

N
Min%'wTw + CZ &

=1
S.C.
yi(wlz; +0) > 1-¢
& >0
1 N N
_ 1l r , (T ,
L(w,b) = Jw w+0i§::1£ﬁiz::1az [yz(w xz+b)+£z*1]

CONCLUSION

[e]e]
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SOFT MARGIN CLASSIFICATION

STILL QUADRATIC PROGRAMMING

N 1 X
W(a) = Zai -3 Z YiYj i Ty T
i=1 ij=1

where 0 < a; <C

N
Zaiyi =0
i=1

CONCLUSION

[e]e]
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SOFT MARGIN CLASSIFICATION

SOFT MARGIN EXAMPLE

H@)

Hy(z) = max(0,1 — 2)

H;y: hinge loss

from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

0, (random_state=0, tol=le-5))
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MuLTICLASS SVM

Multiclass

So far, binary classification problem. What about multiclass ?

Key ideas

» Decompose info multiple binary classification problems
» Make a final decision based on these binary classifiers

Two strategies

» One versus all
» One versus one

23/45
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MULTICLASS SVM

One vs all

For C classes, decompose into C binary classifica-
tion problems
For problem c: . o

» positive examples: z; such that y; = ¢ °
» negative examples: all others elements.
Inference: Winner takes all: for an example x

¢ =arg max w?x

c€[l,c]
% 0% 0%
° o o © o o © o
°, % \0.\1.._ °, o
e e e s ® e
Wl7;lack x>0 thlé’ x>0 VVgTrHHn x>0

o
)

CONCLUSION

[e]e]
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MULTICLASS SVM

One vs one

For C classes, decompose intfo C(C + 1)/2 binary %
classification problems ° © .
For each class pair (k.I): o %

> positive examples: z; such that y; = k
> negative examples: z; such that y; = I.
Inference: Majority.

Training Test

CONCLUSION

[e]e]
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MULTICLASS SVM

One vs all

> Assumption: each class individully separable from the others
> No theoretical justification

> Easy to implement

> Unbalanced classes

» Works well in practice

One vs one

> |f class sizes are small, possible overfitting
» Need large memory to store models

These methods are applicable to any binary classifier.

n sklearn.model_selecti ort train_test_split
i nevsoneClassifier
t OneVsRestClassifier
on sklearn.svm import LinearSVC

f
i
X,

y
X_train, X_test, y_train, y_test y
ovo ( (random_state=0)).
ovo. (X_test)

ova (random_state=8)).fit(X_train, y_train)
ova. (X_test)
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SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

" — So far, support vector machines can only
" Eem ¢ o handle linearly separable data
, EQE o, ¢ — But most data isn’t.
. — We already see how to deal with this problem:
soft margin

— Now: another solution...

27/45
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SVM: NON LINEARLY SEPARABLE CASE

— Points that are not linearly
separable in 2 dimension ..
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SVM: NON LINEARLY SEPARABLE CASE

SVM: NON LINEARLY SEPARABLE CASE

— Points that are not linearly
separable in 2 dimension,
might be linearly separable in
3.
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[e]e]
SVM: NON LINEARLY SEPARABLE CASE

Another example

(a) Data.

(b) 3D Mapping (RBF).

(c) Classification.

30/45
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KERNEL METHODS
Basis
Incorporating Kernels in SVMs
Examples
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BAsis oF KERNEL METHODS

RECALL...
N LN N

W(a) =3 a;— 5 > aigyiyial i w ="y i
= ij=1 i=1
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BASIS

BAsis oF KERNEL METHODS

REcCALL...
N 1 N

W(a) = ZD"' 3 Z oyl e w = Zaiyixi
i=1 ij=1 i=1

AND THEN...

— The decision process doesn’t depend on the dimensionality of the
data.

— We can map to a higher dimensionality of the data space.

— data points only appear within a dot product.

— The error is based on the dot product of data points, not the data
points themselves.

32/45
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BASIS

BAsis oF KERNEL METHODS

AND so...

How to add dimensionality to the data in order to make it linearly separable ?

o Extreme case: construct a dimension for each data point = overfitting
o Mapping: zTz; + ¢(zi)T ¢(z;)

N 1 N
W(a)=> a;— 5 > aiayiyid(zi) o)
=1

4,j=1
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BASIS

WHY DUAL FORMULATION ?

UNTRACTABLE EXAMPLE

#(z0,21) = (23, z0z1, 2120, 27)

applied to a 20x30 image of 600 pixels &~ 180000 dimensions ! Would be
computationally infeasible to work in this space

34/45
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BAsIs

WHY DUAL FORMULATION ?

UNTRACTABLE EXAMPLE

#(z0,21) = (23, z0z1, 2120, 27)

applied to a 20x30 image of 600 pixels &~ 180000 dimensions ! Would be
computationally infeasible to work in this space

DUAL PROBLEM

o «a;: dual variables

o Since any component orthogonal to the space spanned by the
training data has no effect, general result that weight vectors have
dual representation: the representer theorem.

o can reformulate algorithms to learn dual variables rather than weight
vector directly

34/45
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BASIS

KERNEL

KERNELS

We can represent this dot product as a Kernel (Kernel Function, Kernel
Matrix)

Finite (if large) dimensionality of K (x;,z;) unrelated to dimensionality of x
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BASIS

KERNEL

KERNELS

We can represent this dot product as a Kernel (Kernel Function, Kernel
Matrix)

Finite (if large) dimensionality of K (x;,z;) unrelated to dimensionality of x

REMEMBER THE DUAL
Kernels are a mapping

o(x;)
5w ﬁ alwj o ¢(zi) ()

o(x;)

K(zi,25) = ¢(zi) T ¢(;)

35/45
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BASIS

KERNEL

Gram Matrix: K;; = K(z;, ;) = ¢(z;)Td(z5)

FIRST EXAMPLE

K(z,z) = (2T2)?

(€020 + x121)>

a:gzg + 2x0z0T121 + w%z%

(m%, Voxoz1, m%)T(zg, V2z021,22)
d(y) = (43, V2y0y1,97) = o(@)"(2)

with
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BASIS

Gram Matrix: K;j = K(z;,2;) = é(z:)T ¢(z5)

SECOND EXAMPLE

p:zeX — ¢(x)eF
(CL‘, y) g (11,'(2), xoT1,x1T0, "Z%)
Linear equation in F az? + bz? = ¢ — ellipse (non linear shape) in X
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BasIs

CAPACITY OF FEATURE SPACES

The capacity is proportional to the dimension

THEOREM

Given m + 1 examples in general position in a m-dimensional space, every
possible classification can be generated with a thresholded linear function

Extension: Cover’s theorem

» Capacity may easily become too large and lead to overfitting: being
able to realise every classifier means unlikely to generalise well

» Computational costs involved in dealing with large vectors

37/45
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BASIS

KERNEL

KERNELS

o In general: don’t need to know the form of ¢.
o Just specifying the kernel function is sufficient.
o A good kernel: Computing K;; is cheaper than ¢(z;)
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BASIS

KERNEL

KERNELS

o In general: don’t need to know the form of ¢.
o Just specifying the kernel function is sufficient.
o A good kernel: Computing K;; is cheaper than ¢(z;)

VALID KERNELS

o Symmetric

o Must be decomposable into ¢ functions

o Harder to show.
» Gram matrix is positive semi-definite
» Positive entries are definitely positive semi-definite.
» Negative entries may still be positive semi-definite

2T Kz >0

38/45
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BASIS

KERNEL

EXAMPLES

K,K'Kermel= c¢K,K+ K',K.K' exp(K)...

Examples: Polynomial kernels, RBF, String kernels, graph kernels

Note: a SVM model using a sigmoid kernel function is equivalent to a two-layer,
perceptron neural network.
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INCORPORATING KERNELS IN SVMs

INCORPORATING KERNELS IN SVMS

N N
1
Wia) = > ai—3 > aiogyyo()" éz;)
i=1 i,j=1
N 1 N
= Zai ~3 Z ooy yi K (zq, x5)
i=1 i,j=1
o optimize the a; and b w.r.t. K
N
o decision function f(z) = sign | Y iy K (z,2:) + b
i=1

CONCLUSION

[e]e]
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EXAMPLES

EXAMPLES

POLYNOMIAL KERNELS

K(z,2) = (Tz4+60)% >0

dot product: polynomial power of the original dot product.
clarge = focus on linear terms

¢ smalll = focus on higher order terms

Very fast to calculate

O O O O

from sklearn.svm import SVC

, random_state=0)

X,y
X_train, X_test, y_train, y_test
rbf a

) Y
rb mm; ). X_i y_train)
, d (X_train, y_train)
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EXAMPLES

POLYNOMIAL KERNELS
K(z,2) = (Tz4+60)% >0

clarge = focus on linear terms

O O O O

Very fast to calculate

¢ smalll = focus on higher order terms

KERNEL METHODS
0000000000800

dot product: polynomial power of the original dot product.

CONCLUSION

[e]e]

RBF

2
lz—=]]

K(z,z) =e 202

o dot product: related to the distance in space between the two points.

o Placing a bump on each point

from sklearn.svm import SVC

X,y
X_train, X_test, y_train, y_test
rbf a

2
rb i ). Fit (X y_train)
, d

(X_train, y_train)
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EXAMPLES

EXAMPLES

STRING KERNELS

Not a gaussian, but still a legitimate Kernel

o K(s,s') = difference in length,count of different letters, minimum edit
distance

o allow for infinite dimensional inputs

o don’t need to manually encode the input

42/45
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EXAMPLES

EXAMPLES

GRAPH KERNELS
o Define the kernel function based on graph properties
o must be computable in poly-time (paths, spanning trees, cycles, bag

of paths...)
o Possible incorporation of knowledge about the input without direct

feature extraction
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CONCLUSION
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TO CONCLUDE: KERNEL TRICK

To conclude (Kernel trick) : a kernel can be applied where a dot product is
used in an optimization:

> Kernel PCA
> Kernel perceptron
» unsupervised clustering (similarity =~ distance «+ dot product)
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