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Introduction

o Aim: Label subjects defined by features.

o Supervised [ Unsupervised [ Semi supervised methods
— Here: supervised algorithms



Introduction

Training Set Z = {(z;,v;),t € [1,n],z; € X,y; € Y}.

Objective: for x € X, find its label based on an algorithm built on Z.

Central problem in this course (SVM, NN, ...)

Here: description of four simple algorithms

o Naive Bayes classifier
o K Nearest Neighbors
o Linear/Quadratic discriminant analysis

o Decision trees

e Some others will be described later in the course



Naive Bayes classifier

Naive Bayes rule
Simple decision rule

(risinclassk € Y) < (k= argmlaXP(y = l|z))

Using Bayes' rule

(VEEY) Ply=lz) = 2ol

the rule becomes

(risinclassk € Y) < (k= argmax P(zly=1)P(y =1))

ni+m

- Ply=10)=pm=1om

o P(z|y = l): class conditional probability - needs assumptions to be estimated




Naive Bayes classifier - estimation of P(z|y = [)

Assumption: Features are independent, conditionaly to Y

P(z|ly=1) H P(f; = zjly =1),whered = | X]|, f;is the 5'" feature.
If f; takes Q pOSS|bIe discrete values then (Vq) P (f; =qly=1) = zﬁ:%
Using log values, the final Naive Bayes rule is
i d
(risinclassk € Y) < (k = argmax log(P(y=1) + Z logP (f; = x|y
_ J=1

from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
X, ¥

X_train, X_test, y train, y_test (X, y, test_size=0.5, random_state=0)
naive ()

y_pred = naive. (X_train, y_train). ix_testﬂ




Naive Bayes classifier -
example

p(x|lw;) = L exp (— (@ — ) ),i € {1,2}

2
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= (4,1), (p2,02) = (7,1)
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Naive Bayes classifier -
Error

P ) P(wi|x) if ws is chosen
error|c) =
P(ws|x) if wy is chosen

= P(error) = /P(error!w)p(w)dw

Minimizing P(error) < MAP rule.
P(error) = P(error|wy)P(w1) + P(error|ws)P(ws)
with

P(error|w;)P(w;) = P(choose w;|w;) = / p(x|w;)dx
z€R

J

R ;: decision region for x to belong to w;
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LDA/QDA

Parametric methods considering the log ratio

s (=ir=s))

for all class pairs (k, l), and returning the class for which these log ratio are always positive.

Notation: fori € |1, C]:

gi(x0) = P(y = iz = ) = Pz =zoly=1)P(y=14) _  fi(zo)m

C C
Z P(z = zoly = j) P(y = j) Z fi(zo)m;

with f;(x¢) = P(x = x|y = ¢) and m; = P(y = 1)



LDA/QDA - Example

C=2
filz) = 1 e~z (@—pi) "2 (@—pi)
SURNNCRTRISATE
Find z such that go(z) = g1(x) (decision boundary)

go(z) = g1(x) & folz)ms _ fi(z)m

¢ C
IFOLDIOL

then fo(z)mo = f1(z)m

or

o3 (@—m) = (2 pm)

L e_%(w_MO)TEal(w—,uo) _ 1

(2m) 2 [Zo] /2 (2m)4/2 |5 |1/2




LDA - Example

If Vi 32; = X then

taking the log:

1 ) 1 )
logmy — o (z — 1) "2 (z — ) = logmo — — (= — po) ' 27 (& — o)

thus

T 1 B _ _
g (22 ) + 5 [0 o) = (T )] + o = o) = 0

ifa’ = (u1 — po)" X" and b = log (%) + 5 (o2 ko)t — (w1 27 )" ]

Then this is a linear decision boundary alx+b=0



LDA

Gaussian distributions are estimated using Z:

o T; = L, wheren; = #{x € Z,y = i}

~ o1
'“i_EE L j

j7yj:7’

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
X,y

lda ()

lda. (X, y)




QDA

If V2 32; = X doesn't hold anymore, the decision boundary is quadratic.

1 1
xr € classk < k= argmax—glog|2i| — 5(:13 — ;) ' B (x — i) + logm;

|’2 —F—lcyq7ri.

» Spherical classes (¥; = I, Vi) : — % ||z —
o if all 7r; are equal, the decision rule minimizes ||z — p;{|%: 1-NN

T — p;||? is adjusted w.rt the class sizes

o otherwise,
o otherwise &; = USV L, withU = V (Z; symmetric), U eigenmatrix of EZ-E;.F (SVD)
andif AT = 712U T then (z — ;) "2, Mz — i) = [|[ATz — AT ;|2
and this is the spherical case with the linear transform AT,

from sklearn.qda import qda
X,y

qda ()
ER (X, vy)
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LDA /| QDA - Number of
parameters

To predict the class of new data using LDA or QDA,

the underlying parameters must first be learned from
A

e 7; and u; for LDA and QDA
o Y for LDA, 32, for QDA

=C—-14+Cn+ n(n;l) parameters for LDA

=C—-14+Cn+C n(n;l) parameters for LDA

Nombre de paramétres

25000 A

20000 -

15000

10000 +

5000 +

T
100



K nearest neighbors

Given:

1.0 : metricon X 0
2.keN g @
.xe X @0 0
]
] []

the kNN rule assigns x to the most class represented in

. . 1-NN (red)
the k neighbors (z;,y;) € Z of x,in the sense of 4. and 3NN (Blue) decksion rule °

k
Can also be used in regression: y(x) = % Z Yi
i=1



K nearest neighbors - Parameters

e K =~ 4/ n/C where n/C’ if the average number of training points per class.

e Training points can be weighted by their distance to x

from sklearn.neighbors import KNeighborsClassifier

X,y
knn (n_neighbors=3)

knn. (X, y)




K nearest neighbors - Curse of

dimensionality
Close points belong to the same class. In high dimension oo .
spaces, data points sampled from a random probability o 1 e 2
distribution, are far from each other with (almost) the e T
same distance value. . _— .
Sample points uniformly at random within the unit cube e R T e

distance distance distance

and compute the distance between all pair of points
when the dimensionality increases.



K nearest neighbors - Curse of
dimensionality

e Real-world data does not follow a random
probability distribution

e Data has structure (edges, textures)
—> Lie in a much lower dimensional sub-space (not

ke he' be bs e/ los el s a6 a8l (sl [a6] ol a6l (=6l 26l las) a6l lael a6l ad
A - AT FLA A

necessari |y linea r) than R d . E FE E R E R R b Iy Yy Yy Ty,




K nearest neighbors - Complexity

Complexity: O(n. d. k) where n is the number of training samples, d the dimension of the
feature space.

— KNN becomes very slow and memory consuming when n is large
BUT we want to have n as large as possible to get the best possible accuracy.



K nearest neighbors - Example



K nearest neighbors - Kd-tree

Solution to speed up the process
-Leveraging data structure

e When we search for the closest point(s), most data points are actually far away
—>There is no need to compute the distances for these far away points.
—> Partition the feature space with a binary tree structure.



K nearest neighbors - Kd-tree

Example: let Z be the full dataset

1. cut along one feature dimension (hyperplane H) that divides the data into two sets
Z1 and Z5, with approximatively |Z1| = |Z3| ~ |Z]/2

2.let x be a new data point x: we want to find the closest neighbor.

3.identify in which set the data z lies, e.g Z;.

4.find the nearest neighbory € Z1in O(n/2).

5.compute d(x, H) between x and H.

6.iffd(x, H) > d(x,y) thenall € Z5 can be discarded (by triangular inequality)
— 2 X speed-up!

7.iffd(x, H) < d(x,y):itis possible that the nearest neighbor lies in Z5
—> worst case complexity = KNN complexity, but average complexity is better.



K nearest neighbors - Kd-tree

Tree construction
e Split recursively in half along each feature dimension.
e lterate over all feature dimensions.

Tree depth is quite small : O(logs(n))

Heuristic to select which next feature dimension: select the one that captures the largest
variation of data (= PCA).



K nearest neighbors - Kd-tree

Pros

o Exact KNN, but approximation can be used e.g. no backtracking in parent nodes.
e Easy to implement.

o Average inference complexity: O(d. log2(n)) and O(d. n) with KNN.

Cons: Cuts are axis-aligned: does not generalize well to higher dimensions



K nearest neighbors - Kd-
tree

from sklearn.neighbors import KDTree
x_
tree = (X, leaf size=2)

d, indices = tree. (X[:1]1, k=5)
(indices) # Indices of the first 5 neighbors

Niveau 1

kd-tree

[ ]
Niveau 3
[ ]

Niveau 2
P

Niveau 4
[

e 1. 1




Decision trees - Motivation

KNN requires to store the full dataset to make a prediction. n large — intractable.

Most data are not random and usually concentrate in regions with the same predicted
class or regression value — k-d tree.

Goal: Solve a classification or a regression problem.
What is critical is to identify areas where all points have the same class label.

Decision trees:
Leverage the idea that a data point has the same class label or same regression value
when it falls into a cluster of same label or same regression value.

—> There is no need to load the full training set for inference.

—> Build and load a tree structure that recursively splits the feature space into regions with
similar label/value.



Decision trees - Definition

Predict the class/value of an object x by a series of tests on the features that describe x.
Tests are organized in such a way that the answer to one of them indicates the next test to
do on x structuring the tests into a tree.

Construction

1. Init : a root containing Z

2. Iteration: each node is split into several nodes. Each element of Z goes into one node
only

3. Stop: when ... see next
—> Recursive partition of each node according to the value of the feature tested at
each iteration.
—> Feature choice: based on the maximization of a homogeneity measure of the
descendants with respect to the target variable.



Decision trees - Stopping rule and affectation

The growth of the tree stops at a given node = terminal node (leaf) when:

Classification

e itis homogeneous = predicted value =y

e it reaches a maximum depth max_depth)

e here is no admissible partition left (min_samples_split,criterion)

e it contains a number of observations less than some value (min_samples_leaf)
Regression

Predicted value associated to a leaf = mean of the values of the y;'s among the
observations belonging to this terminal node.



Decision trees - ID3

ID3(Z2)
1.1fV ¢ € [1,n] y; = y=constant
i. Return a tree with a node containing y

2.Else
i.Let k € |1, d] the feature with the highest gain G(Z, k).

i. {k1 - - - ki } - modalities of the feature k.

iii. {Z1 - -+ Z; }: subsets of Z having value k1 - - - k., for k.

iv. Build the tree with root kand subtrees ID3(Z;),i € [[1, m]], connected to k with
an edge labeled with k;, 7 € |1, m].

from sklearn.tree import DecisionTreeClassifier
X,y
dt ()

dt = dt. (X, y)
tree. (dt)




Decision trees - Inference

Once the tree is constructed, there is no need to keep the training set in memory.

What we need to store

i. The tree structure, depth < logs(n)

ii. Class probability/regression value in the leaf nodes.

Decision tree does not require any distance computation.

The cut is based on feature value.

= inference is very fast < O(logz(n)), independent of d.



Decision trees - Gain

Entropy

e Ch={z € Zy=1y}, ke[1,C]

Ch|
Z] !

e Forx € Z, P(:L’EC].C)%pk:

C
e Entropyof Z: H(Z) = — Zpklogz Dk
k=1

o if H(Z) = 0,allz € Z belong to the same class

o H(Z)is maximum if all the pg, are equal



Decision trees - Gain

Gain: information that is gained by splitting a set of data points.
For a feature k, the gain is computed as follow

1. Z is partitioned w.rt. values of k inm subsets {Z1 - - - Z,,, }

Z;
2.pi:P(CIZEZi) X p; = ‘| ’|

3.Information gainon k: G(Z, k) = H(Z) — szH(ZZ)




Decision trees - Example

e 4 features:C, T, HetV
e 14 situations

e decision y: play golf

x @ T H V Y
x1 sun hot high no | O
) sun hot high yes | O
T3 cloudy hot high no | 1
T4 rain good high no | 1
5 rain cold normal no | 1
T6 rain cold normal vyes | O
z7 | cloudy cold normal vyes | 1
T8 sun good high no | O
g sun cold normal no | |

10 rain good normal no | 1
r11 sun good normal vyes | |
x12 | cloudy good high yes | 1
x13 | cloudy hot normal no | 1
14 rain good high yes | O




Decision trees - Example

Init: root containing Z = {(x;,y;),% € [1,14]}.
First step: qo = 5/14.q; = 9/14, H(Z) = 0.41 + 0.53 = 0.94.
For each feature:

c y=1y=0 p;, H(Z)

sun 2 3 5/14 0.971
cloudy 4 0 4114 O
rain 3 2 5/14 0.971

and G(Z, C) = 0.247. Likewise G(Z, T')=0.029, G(Z, H)=0.152 et G(Z, V)=0.048.
= (is retained.



Decision trees - Example

Z1={x1,%2, %8, T, 11}, Ly = {%3,%7,T12,T13}, Z3 = {4, L5, T6, T10, T14 -\

II’O

inl Clou

C

rain

non

oui

cloudy

sun

normal

high




Decision trees - Other measures of gain

A binary attribute a splits each subset n ; in 2 parts of cardinality lj (a=T) and r; (a=F).

C C
Ifl:le and r:er:
j=1 j=1

e [j/nandr;/n are estimates of P(a = TRUE,y = y;) and
P(a = FALSE,y =y,).
e I/nandr/n are estimates of P(a = TRUFE) and P(a = FALSE).

e nj/nis an estimate of P(y = y;).

Measures

C
-Giniindex: Gini(y | a) = % Z




Regression trees

Replace H(Z) with the variance of Z

Limit tree depth Minimum node size



Regression trees - Pruning

o Tradeoff between maximal tree (overfits) and the constant tree (too rough)
e Nice theory to find an optimal tree, minimizing prediction error penalized by

complexity (hnumber of leaves)

Notations
Complexity of T" |T'| number of leaves
Adjustment error of T

D;: heterogeneity of leaf z.



Regression trees - Sequences of trees

Adjustment error penalized by the complexity:
C(T) = D(T) +~|T|

— v = 0: maximal tree T}, minimizes C.(T')
— v " the division for which the improvement of D is smaller than «y is cancelled and

e two leaves are pruned

e New tree

= Sequence of trees 1,0 O 17 DO T - - - T'k: Breiman's sequence.



Regression trees - Optimal tree

1.Compute 1,4,

2. Compute Breiman's sequence 17 D 15 - - - T’k associated to the sequence of
parameters yi, - - - YK

3.Forv = 1to V (V-fold cross validation error)
i. For each sample composed of V' — 1 folds, estimate the sequence of trees

associated with 1, - - - vYg
ii. Estimate the error on the validation fold.
4.For each vy, - - - vg compute the mean of these errors.
5. Determine the optimal value 7y, minimizing the error mean.

6. Retain the tree corresponding to yopt in17 D 1o - - - Tk



