
PERCEPTRON MULTILAYER PERCEPTRONS

PERCEPTRONS AND MULTILAYER PERCEPTRONS

Vincent Barra
LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

0 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

PERCEPTRON

MULTILAYER PERCEPTRONS

1 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

THRESHOLD LOGIC UNIT

Mc Culloch and Pitts, 1943

First mathematical model for a neuron
For x boolean vector, w, b ∈ R:

f(x) = 1
{w
∑
i

xi + b ≥ 0}

and in particular
I OR(x, y) = 1{x+y−0.5≥0}
I AND(x, y) = 1{x+y−1.5≥0}
I NOT (x) = 1{−x+0.5≥0}

Any Boolean function can be build with such
units.

2 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

PERCEPTRON

Rosenblatt 1957

Generalization: w,x ∈ Rd, b ∈ R

f(x) = 1{wTx+b≥0}

Relation to biology

0 otherwise
1 if w x +b >=0T

3 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

PERCEPTRON

A more general view

f(x) = σ(wTx + b)

where
I w: synaptic weights
I b: bias
I wTx : post synaptic potential
I σ: activation function

4 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

REPRESENTING THE PERCEPTRON

Graphical representations

1 ”Neural” representation

2

y = wT x + b h = σ(y)

1

x1

x2

...

xd

b

w1

w2

wd
Potential Activation function

5 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

REPRESENTING THE PERCEPTRON

Graphical representations

1 ”Neural” representation

2 Computational graph
I white nodes: inputs and outputs
I red nodes: model parameters
I blue nodes: operations

5 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

REPRESENTING THE PERCEPTRON

Graphical representations

1 ”Neural” representation

2 Computational graph
I white nodes: inputs and outputs
I red nodes: model parameters
I blue nodes: operations

5 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

REPRESENTING THE PERCEPTRON

Basic brick

This unit is the basic brick of all neural
networks

5 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE PERCEPTRON

Problem statement

How to build the model ?
I Input: Learning set Z =

{
(xi, yi), i ∈ [[1 · · ·n]],xi ∈ Rd+1, yi ∈ R

}
I Unknown: w ∈ Rd+1

6 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE PERCEPTRON

Problem statement

How to build the model ?
I Input: Learning set Z =

{
(xi, yi), i ∈ [[1 · · ·n]],xi ∈ Rd+1, yi ∈ R

}
I Unknown: w ∈ Rd+1

Key Idea

For each xi ∈ Z:
I expected output: yi
I computed output: hi = σ(wTxi) = fw(x)

If L : Rd+1 × Rd+1 → R is a loss function

ŵ = Argmin
w

∑
(x,y)∈Z

L (fw(x), y)

6 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

EXAMPLES OF LOSS FUNCTIONS

Binary classification (-1/1)

1 Characteristic function: L(fw(x), y) = 1yfw(x)≤0

2 Logistic loss : L(fw(x), y) = ln
(
1 + e−yfw(x)

)
3 binary cross-entropy: L(fw(x), y) = − (ylog(fw(x)) + (1− y)log(1− fw(x)))

Regression

1 Hinge loss : L(fw(x), y) = (1− yfw(x))+ = max (0, 1− yfw(x))

2 MSE (L2 loss) : L(fw(x), y) = ‖fw(x)− y‖2

3 Huber loss : L(fw(x), y) =

{
1
2ε (fw(x)− y)2 if |fw(x)− y| ≥ ε
0 otherwise

4 Vapnik loss: L(fw(x), y) =

{
0 if |fw(x)− y| ≤ ε
|fw(x)− y| − ε otherwise

7 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

FIRST TRAINING ALGORITHM

Here, σ(x) ∈ {−1, 1}
Given a training set

Z = {(xi, yi), i ∈ [[1 · · ·n]],xi ∈ Rd+1, yi ∈ {−1, 1}}

this linear operator can be trained for a binary classification problem.

w0 = 0
k = 0
while ∃i such that
yi((w

k)
T
xi) ≤ 0 do

wk+1 = wk + yixi
k = k + 1

end

8 / 27


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





PERCEPTRON MULTILAYER PERCEPTRONS

FIRST TRAINING ALGORITHM

Convergence iff:
I Points lie in a sphere of radius R: (∀i ∈ [[1 · · ·n]]) ‖xi‖ ≤ R
I The two classes can be separated by a margin:

∃w̃, ‖w̃‖ = 1 ∃γ > 0, (∀i ∈ [[1 · · ·n]]) yi(w̃
Txi) ≥ γ/2

If so, the perceptron stops as soon as it finds a separating hyperplane.

9 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

FIRST TRAINING ALGORITHM

Convergence iff:
I Points lie in a sphere of radius R: (∀i ∈ [[1 · · ·n]]) ‖xi‖ ≤ R
I The two classes can be separated by a margin:

∃w̃, ‖w̃‖ = 1 ∃γ > 0, (∀i ∈ [[1 · · ·n]]) yi(w̃
Txi) ≥ γ/2

If so, the perceptron stops as soon as it finds a separating hyperplane. But
what if the data is non linearly separable ?

9 / 27


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

One possible solution: minimize the amount of errors.

1 Change σ function to make it differentiable

→
2 Error

`(w) =
∑

(x,y)∈Z
L (fw(x), y)

3 Minimize the error w.r.t w.

10 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

Gradient

At a local minimum the gradient is null:
∑

(x,y)∈Z
∇wL (fw(x), y) = 0

11 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

Gradient

At a local minimum the gradient is null:
∑

(x,y)∈Z
∇wL (fw(x), y) = 0

Gradient Descent Algorithm

1 Initialization: w = w0, k = 0

2 While (non stop)
2.1 gk = 1

|Z|

∑
(x,y)∈Z

∇wL
(
fwk

(x), y
)

2.2 wk+1 = wk − ηgk
2.3 k = k + 1

Additional ressource

See Slides ”toy example” and ”Optimization for deep Learning”.

11 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

Algorithm parameters:
I stopping criterion
I η: learning rate
I Weight initialization

η = 10−2 η = 2.10−2 η = 4.10−2 η = 5.10−2 η = 5.310−2

12 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

Different learning strategies

I Compute the error over all Z: real
gradient descent

I Compute the error on one example only:
stochastic gradient descent (SGD)

I Compute the error on a batch of
example: batch learning (minibatch)

SGD minibatch

13 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

But...
If we want to accurately classify the data (and allow a good generalization
property), we need to find something else...

14 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

Stacking linear classifiers

A linear classifier of the form

f : Rd+1 → R
x 7→ σ(wTx + b)

15 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

Stacking linear classifiers

A linear classifier of the form

f : Rd+1 → R
x 7→ σ(wTx + b)

can naturally be component-wise extended
to any function f : Rd+1 → Rc

15 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

And even...

x2

x3

x4

x5

x6

16 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

The general structure can be defined using x(0) = x and

(∀l ∈ [[1 · · ·L]]) x(l) = σ(w(l)Tx(l−1) + b(l))

This is a Multilayer Perceptron (MLP).

17 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

BUILDING COMPLEX NEURAL NETWORKS

h = σ(wT x+ b)

h ∈ R,
w, x ∈ Rd+1

b ∈ R

18 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

BUILDING COMPLEX NEURAL NETWORKS

h = σ(wT x+ b)

h ∈ R,
w, x ∈ Rd+1

b ∈ R Parallel composition−−−−−−−−−−−−→

h = σ(W T x+ b)

h ∈ Rq
W ∈Md+1,q(R)
b ∈ Rq ,
σ element-wise function

18 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

BUILDING COMPLEX NEURAL NETWORKS

h = σ(wT x+ b)

h ∈ R,
w, x ∈ Rd+1

b ∈ R Parallel composition−−−−−−−−−−−−→

100× speed up

h = σ(W
T
x+ b)

h ∈ Rq
W ∈ Md+1,q(R)
b ∈ Rq,
σ element-wise function

h is the output of a layer.

18 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

σ has to be non linear (otherwise equivalent to a perceptron).

19 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE MLP

Expanding the gradient descent

I At step k of the gradient descent, need to evaluate

∇θL (fθ(x), y)

I Evaluation of the total derivatives ∂L
∂W j

and ∂L
∂bj

, j ∈ [[1 . . . L]]

⇒ Automatic differentiation on the computational graph

20 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE MLP

Expanding the gradient descent

I At step k of the gradient descent, need to evaluate

∇θL (fθ(x), y)

I Evaluation of the total derivatives ∂L
∂W j

and ∂L
∂bj

, j ∈ [[1 . . . L]]

⇒ Automatic differentiation on the computational graph

Chain Rule

Let g : R→ Rm and f : Rm → R

f ◦ g(x) = f(u) = y where u = g(x) = (g1(x) . . . gm(x))T = (u1 . . . um)

Chain rule:
dy

dx
=

m∑
j=1

∂y

∂uj

duj

dx︸︷︷︸
recursive

20 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE MLP

Automatic differentiation

I MLP = composition of differentiable functions
I The total derivatives of the loss can be evaluated backward, by

applying the chain rule recursively over its computational graph.

21 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE MLP

Automatic differentiation

I MLP = composition of differentiable functions
I The total derivatives of the loss can be evaluated backward, by

applying the chain rule recursively over its computational graph.

Automatic differentiation

1 Forward pass: values are all computed from inputs to outputs

2 Backward pass: the total derivatives are computed by walking
through all paths from outputs to parameters in the computational
graph and accumulating the terms.

21 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE MLP

Automatic differentiation

I MLP = composition of differentiable functions
I The total derivatives of the loss can be evaluated backward, by

applying the chain rule recursively over its computational graph.

Automatic differentiation

1 Forward pass: values are all computed from inputs to outputs

2 Backward pass: the total derivatives are computed by walking
through all paths from outputs to parameters in the computational
graph and accumulating the terms.

Additional ressource

See Slides ”backpropagation” and ”Vanishing gradient”.

21 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

LEARNING THE MLP

Example: derivatives with respect to W 1

1 Forward pass: u1,u2,u3 and ŷ computed by traversing the graph, given
x,W 1 and W 2

2 Backward pass :

dŷ

dW 1
=

∂ŷ

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂W 1

=
∂σ(u3)

∂u3

∂W T
2 u2

∂u2

∂σ(u1)

∂u1

∂W T
1 u1

∂W 1

Evaluating the partial derivatives requires the intermediate values
computed forward

22 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

UNIVERSAL APPROXIMATION

Theorem [Cybenko 1989; Hornik et al, 1991]

Let σ be a bounded, non-constant continuous function.
Let Id denote the d-dimensional hypercube, and C(Id) denote the space
of continuous functions on Id.

(∀f ∈ C(Id))(∀ε > 0)(∃q > 0, vi,wi, bi, i ∈ [[1 . . . q]]) such that

F (x) =

q∑
i=1

viσ(wTx + b)

satisfies
sup
x∈Id

| f(x)− F (x) |< ε

23 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

UNIVERSAL APPROXIMATION

f(x) = x2, |Z| = 50

A simple example
I |Z| points uniformly sampled

(red) over the definition set

I 1 hidden layer MLP, 3 neurons.

I tanh activation function, and
linear output neurons

I network output : blue curve

I hidden neurons outputs:
dashed curves

24 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

UNIVERSAL APPROXIMATION

Properties

I Guarantees that a single hidden layer network can represent any
classification problem in which the boundary is locally linear (smooth)

I Does not inform about good/bad architectures, nor how they relate
to the optimization procedure

I Generalizes to any non-polynomial (possibly unbounded) activation
function, including the ReLU

25 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

UNIVERSAL APPROXIMATION

Theorem [Barron, 1992]

Let a one-hidden layer MLP with q hidden neurons , p inputs and |Z| = n.
The mean integrated square error between the estimated network F̂ and
the target function f is bounded by

O

(
C2
f

q
+
qp

n
log(n)

)

where Cf measures the global smoothness of f .

Properties

I Combines approximation and estimation errors.
I Provided enough data, guarantees that adding more neurons will

result in a better approximation

26 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

EFFECT OF DEPTH

Theorem [Montúfar et al, 2014]

A MLP with ReLU as activation functions, p inputs, L hidden layers with q ≥ p

neurons can compute functions having Ω

((
q
p

)(L−1)p
qp
)

linear regions

(asymptotic lower bound).

Properties

I The number of linear regions of deep models grows exponentially in L
and polynomially in q.

I Even for small values of L and q, deep rectifier models are able to
produce substantially more linear regions than shallow rectifier
models.

27 / 27


	Perceptron
	Multilayer perceptrons

	fd@rm@1: 
	fd@rm@0: 


