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PERCEPTRON MULTILAYER PERCEPTRONS

THRESHOLD LOGIC UNIT

Mc Culloch and Pitts, 1943

First mathematical model for a neuron
For x boolean vector, w, b ∈ R:

f(x) = 1
{w
∑
i

xi + b ≥ 0}

and in particular
I OR(x, y) = 1{x+y−0.5≥0}
I AND(x, y) = 1{x+y−1.5≥0}
I NOT (x) = 1{−x+0.5≥0}

Any Boolean function can be build with such
units.
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PERCEPTRON

Rosenblatt 1957

Generalization: w,x ∈ Rd, b ∈ R

f(x) = 1{wTx+b≥0}

Relation to biology

0 otherwise
1 if w x +b >=0T
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PERCEPTRON

A more general view

f(x) = σ(wTx + b)

where
I w: synaptic weights
I b: bias
I wTx : post synaptic potential
I σ: activation function
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REPRESENTING THE PERCEPTRON

Graphical representations

1 ”Neural” representation

2

y = wT x + b h = σ(y)

1

x1

x2

...

xd

b

w1

w2

wd
Potential Activation function
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REPRESENTING THE PERCEPTRON

Graphical representations

1 ”Neural” representation

2 Computational graph
I white nodes: inputs and outputs
I red nodes: model parameters
I blue nodes: operations
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REPRESENTING THE PERCEPTRON

Basic brick

This unit is the basic brick of all neural
networks
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LEARNING THE PERCEPTRON

Problem statement

How to build the model ?
I Input: Learning set Z =

{
(xi, yi), i ∈ [[1 · · ·n]],xi ∈ Rd+1, yi ∈ R

}
I Unknown: w ∈ Rd+1
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LEARNING THE PERCEPTRON

Problem statement

How to build the model ?
I Input: Learning set Z =

{
(xi, yi), i ∈ [[1 · · ·n]],xi ∈ Rd+1, yi ∈ R

}
I Unknown: w ∈ Rd+1

Key Idea

For each xi ∈ Z:
I expected output: yi
I computed output: hi = σ(wTxi) = fw(x)

If L : Rd+1 × Rd+1 → R is a loss function

ŵ = Argmin
w

∑
(x,y)∈Z

L (fw(x), y)
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EXAMPLES OF LOSS FUNCTIONS

Binary classification (-1/1)

1 Characteristic function: L(fw(x), y) = 1yfw(x)≤0

2 Logistic loss : L(fw(x), y) = ln
(
1 + e−yfw(x)

)
3 binary cross-entropy: L(fw(x), y) = − (ylog(fw(x)) + (1− y)log(1− fw(x)))

Regression

1 Hinge loss : L(fw(x), y) = (1− yfw(x))+ = max (0, 1− yfw(x))

2 MSE (L2 loss) : L(fw(x), y) = ‖fw(x)− y‖2

3 Huber loss : L(fw(x), y) =

{
1
2ε (fw(x)− y)2 if |fw(x)− y| ≥ ε
0 otherwise

4 Vapnik loss: L(fw(x), y) =

{
0 if |fw(x)− y| ≤ ε
|fw(x)− y| − ε otherwise
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FIRST TRAINING ALGORITHM

Here, σ(x) ∈ {−1, 1}
Given a training set

Z = {(xi, yi), i ∈ [[1 · · ·n]],xi ∈ Rd+1, yi ∈ {−1, 1}}

this linear operator can be trained for a binary classification problem.

w0 = 0
k = 0
while ∃i such that
yi((w

k)
T
xi) ≤ 0 do

wk+1 = wk + yixi
k = k + 1

end
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PERCEPTRON MULTILAYER PERCEPTRONS

FIRST TRAINING ALGORITHM

Convergence iff:
I Points lie in a sphere of radius R: (∀i ∈ [[1 · · ·n]]) ‖xi‖ ≤ R
I The two classes can be separated by a margin:

∃w̃, ‖w̃‖ = 1 ∃γ > 0, (∀i ∈ [[1 · · ·n]]) yi(w̃
Txi) ≥ γ/2

If so, the perceptron stops as soon as it finds a separating hyperplane.

9 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

FIRST TRAINING ALGORITHM

Convergence iff:
I Points lie in a sphere of radius R: (∀i ∈ [[1 · · ·n]]) ‖xi‖ ≤ R
I The two classes can be separated by a margin:

∃w̃, ‖w̃‖ = 1 ∃γ > 0, (∀i ∈ [[1 · · ·n]]) yi(w̃
Txi) ≥ γ/2

If so, the perceptron stops as soon as it finds a separating hyperplane. But
what if the data is non linearly separable ?
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PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

One possible solution: minimize the amount of errors.

1 Change σ function to make it differentiable

→
2 Error

`(w) =
∑

(x,y)∈Z
L (fw(x), y)

3 Minimize the error w.r.t w.
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PERCEPTRON MULTILAYER PERCEPTRONS

SECOND TRAINING ALGORITHM

Gradient

At a local minimum the gradient is null:
∑

(x,y)∈Z
∇wL (fw(x), y) = 0
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SECOND TRAINING ALGORITHM

Gradient

At a local minimum the gradient is null:
∑

(x,y)∈Z
∇wL (fw(x), y) = 0

Gradient Descent Algorithm

1 Initialization: w = w0, k = 0

2 While (non stop)
2.1 gk = 1

|Z|

∑
(x,y)∈Z

∇wL
(
fwk

(x), y
)

2.2 wk+1 = wk − ηgk
2.3 k = k + 1

Additional ressource

See Slides ”toy example” and ”Optimization for deep Learning”.
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SECOND TRAINING ALGORITHM

Algorithm parameters:
I stopping criterion
I η: learning rate
I Weight initialization

η = 10−2 η = 2.10−2 η = 4.10−2 η = 5.10−2 η = 5.310−2
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SECOND TRAINING ALGORITHM

Different learning strategies

I Compute the error over all Z: real
gradient descent

I Compute the error on one example only:
stochastic gradient descent (SGD)

I Compute the error on a batch of
example: batch learning (minibatch)

SGD minibatch
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But...
If we want to accurately classify the data (and allow a good generalization
property), we need to find something else...

14 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

Stacking linear classifiers

A linear classifier of the form

f : Rd+1 → R
x 7→ σ(wTx + b)
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Stacking linear classifiers

A linear classifier of the form

f : Rd+1 → R
x 7→ σ(wTx + b)

can naturally be component-wise extended
to any function f : Rd+1 → Rc
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And even...

x2

x3

x4

x5

x6
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PERCEPTRON MULTILAYER PERCEPTRONS

The general structure can be defined using x(0) = x and

(∀l ∈ [[1 · · ·L]]) x(l) = σ(w(l)Tx(l−1) + b(l))

This is a Multilayer Perceptron (MLP).
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BUILDING COMPLEX NEURAL NETWORKS

h = σ(wT x+ b)

h ∈ R,
w, x ∈ Rd+1

b ∈ R
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BUILDING COMPLEX NEURAL NETWORKS

h = σ(wT x+ b)

h ∈ R,
w, x ∈ Rd+1

b ∈ R Parallel composition−−−−−−−−−−−−→

h = σ(W T x+ b)

h ∈ Rq
W ∈Md+1,q(R)
b ∈ Rq ,
σ element-wise function

18 / 27



PERCEPTRON MULTILAYER PERCEPTRONS

BUILDING COMPLEX NEURAL NETWORKS

h = σ(wT x+ b)

h ∈ R,
w, x ∈ Rd+1

b ∈ R Parallel composition−−−−−−−−−−−−→

100× speed up

h = σ(W
T
x+ b)

h ∈ Rq
W ∈ Md+1,q(R)
b ∈ Rq,
σ element-wise function

h is the output of a layer.
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σ has to be non linear (otherwise equivalent to a perceptron).
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LEARNING THE MLP

Expanding the gradient descent

I At step k of the gradient descent, need to evaluate

∇θL (fθ(x), y)

I Evaluation of the total derivatives ∂L
∂W j

and ∂L
∂bj

, j ∈ [[1 . . . L]]

⇒ Automatic differentiation on the computational graph
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LEARNING THE MLP

Expanding the gradient descent

I At step k of the gradient descent, need to evaluate

∇θL (fθ(x), y)

I Evaluation of the total derivatives ∂L
∂W j

and ∂L
∂bj

, j ∈ [[1 . . . L]]

⇒ Automatic differentiation on the computational graph

Chain Rule

Let g : R→ Rm and f : Rm → R

f ◦ g(x) = f(u) = y where u = g(x) = (g1(x) . . . gm(x))T = (u1 . . . um)

Chain rule:
dy

dx
=

m∑
j=1

∂y

∂uj

duj

dx︸︷︷︸
recursive
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LEARNING THE MLP

Automatic differentiation

I MLP = composition of differentiable functions
I The total derivatives of the loss can be evaluated backward, by

applying the chain rule recursively over its computational graph.
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LEARNING THE MLP

Automatic differentiation

I MLP = composition of differentiable functions
I The total derivatives of the loss can be evaluated backward, by

applying the chain rule recursively over its computational graph.

Automatic differentiation

1 Forward pass: values are all computed from inputs to outputs

2 Backward pass: the total derivatives are computed by walking
through all paths from outputs to parameters in the computational
graph and accumulating the terms.
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LEARNING THE MLP

Automatic differentiation

I MLP = composition of differentiable functions
I The total derivatives of the loss can be evaluated backward, by

applying the chain rule recursively over its computational graph.

Automatic differentiation

1 Forward pass: values are all computed from inputs to outputs

2 Backward pass: the total derivatives are computed by walking
through all paths from outputs to parameters in the computational
graph and accumulating the terms.

Additional ressource

See Slides ”backpropagation” and ”Vanishing gradient”.
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LEARNING THE MLP

Example: derivatives with respect to W 1

1 Forward pass: u1,u2,u3 and ŷ computed by traversing the graph, given
x,W 1 and W 2

2 Backward pass :

dŷ

dW 1
=

∂ŷ

∂u3

∂u3

∂u2

∂u2

∂u1

∂u1

∂W 1

=
∂σ(u3)

∂u3

∂W T
2 u2

∂u2

∂σ(u1)

∂u1

∂W T
1 u1

∂W 1

Evaluating the partial derivatives requires the intermediate values
computed forward
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UNIVERSAL APPROXIMATION

Theorem [Cybenko 1989; Hornik et al, 1991]

Let σ be a bounded, non-constant continuous function.
Let Id denote the d-dimensional hypercube, and C(Id) denote the space
of continuous functions on Id.

(∀f ∈ C(Id))(∀ε > 0)(∃q > 0, vi,wi, bi, i ∈ [[1 . . . q]]) such that

F (x) =

q∑
i=1

viσ(wTx + b)

satisfies
sup
x∈Id

| f(x)− F (x) |< ε
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UNIVERSAL APPROXIMATION

f(x) = x2, |Z| = 50

A simple example
I |Z| points uniformly sampled

(red) over the definition set

I 1 hidden layer MLP, 3 neurons.

I tanh activation function, and
linear output neurons

I network output : blue curve

I hidden neurons outputs:
dashed curves
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UNIVERSAL APPROXIMATION

Properties

I Guarantees that a single hidden layer network can represent any
classification problem in which the boundary is locally linear (smooth)

I Does not inform about good/bad architectures, nor how they relate
to the optimization procedure

I Generalizes to any non-polynomial (possibly unbounded) activation
function, including the ReLU
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UNIVERSAL APPROXIMATION

Theorem [Barron, 1992]

Let a one-hidden layer MLP with q hidden neurons , p inputs and |Z| = n.
The mean integrated square error between the estimated network F̂ and
the target function f is bounded by

O

(
C2
f

q
+
qp

n
log(n)

)

where Cf measures the global smoothness of f .

Properties

I Combines approximation and estimation errors.
I Provided enough data, guarantees that adding more neurons will

result in a better approximation
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EFFECT OF DEPTH

Theorem [Montúfar et al, 2014]

A MLP with ReLU as activation functions, p inputs, L hidden layers with q ≥ p

neurons can compute functions having Ω

((
q
p

)(L−1)p
qp
)

linear regions

(asymptotic lower bound).

Properties

I The number of linear regions of deep models grows exponentially in L
and polynomially in q.

I Even for small values of L and q, deep rectifier models are able to
produce substantially more linear regions than shallow rectifier
models.
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