Multilayer perceptrons

PERCEPTRONS AND MULTILAYER PERCEPTRONS

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

INCREATORIE O INFORMATIOLIE. I NCOELISETION ET D'OFTIMISETION DES SYSTÈMES.

Multilayer perceptrons

PERCEPTRON

MULTILAYER PERCEPTRONS

LANDRATOINE D'INFORMATIQUE, DE MODELINIETION ET D'OPTIMISATION DES SYSTÈMES.

MULTILAYER PERCEPTRONS

THRESHOLD LOGIC UNIT

Mc Culloch and Pitts, 1943

First mathematical model for a neuron For \boldsymbol{x} boolean vector, $w, b \in \mathbb{R}$:

$$f(x) = \mathbb{1}_{\{w \sum_{i} x_i + b \ge 0\}}$$

and in particular

- $OR(x,y) = \mathbb{1}_{\{x+y-0.5 \ge 0\}}$
- $AND(x, y) = \mathbb{1}_{\{x+y-1.5 \ge 0\}}$

►
$$NOT(x) = \mathbb{1}_{\{-x+0.5 \ge 0\}}$$

Any Boolean function can be build with such units.

LARDRATORE O INPORMATINEE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

PERCEPTRON

Rosenblatt 1957

Generalization: $oldsymbol{w},oldsymbol{x}\in\mathbb{R}^d,\ b\in\mathbb{R}$

$$f(x) = \mathbb{1}_{\{\boldsymbol{w}^T \boldsymbol{x} + b > 0\}}$$

Relation to biology

ORATORIE D'INFORMATIQUE, REDÉLISATION ET D'OPTIMISATION DES SYSTÈMES.

Multilayer perceptrons

PERCEPTRON

A more general view

$$f(\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \boldsymbol{x} + b)$$

where

- ▶ w: synaptic weights
- ▶ b: bias
- $w^T x$: post synaptic potential
- σ : activation function

REPRESENTING THE PERCEPTRON

REPRESENTING THE PERCEPTRON

Graphical representations

- "Neural" representation
- 2 Computational graph
 - white nodes: inputs and outputs
 - red nodes: model parameters
 - blue nodes: operations

Multilayer perceptrons

Representing the Perceptron

¹ "Neural" representation

- ² Computational graph
 - white nodes: inputs and outputs
 - red nodes: model parameters
 - blue nodes: operations

LARCEATORE D'INFORMATIQUE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES

Multilayer perceptrons

Representing the Perceptron

Basic brick

This unit is the basic brick of all neural networks

LEARNING THE PERCEPTRON

Problem statement

How to build the model?

- $\blacktriangleright \text{ Input: Learning set } Z = \left\{ (\boldsymbol{x}_i, y_i), i \in \llbracket 1 \cdots n \rrbracket, \boldsymbol{x}_i \in \mathbb{R}^{d+1}, y_i \in \mathbb{R} \right\}$
- ▶ Unknown: $w \in \mathbb{R}^{d+1}$

LEARNING THE PERCEPTRON

Problem statement

How to build the model?

- $\blacktriangleright \text{ Input: Learning set } Z = \left\{(\pmb{x}_i, y_i), i \in \llbracket 1 \cdots n \rrbracket, \pmb{x}_i \in \mathbb{R}^{d+1}, y_i \in \mathbb{R}\right\}$
- ▶ Unknown: $w \in \mathbb{R}^{d+1}$

Key Idea

For each $x_i \in Z$:

- \blacktriangleright expected output: y_i
- computed output: $h_i = \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) = f_{\boldsymbol{w}}(\boldsymbol{x})$

If $\mathcal{L}:\mathbb{R}^{d+1}\times\mathbb{R}^{d+1}\to\mathbb{R}$ is a loss function

$$\hat{\boldsymbol{w}} = Arg\min_{\boldsymbol{w}} \sum_{(\boldsymbol{x},y) \in Z} \mathcal{L}\left(f_{\boldsymbol{w}}(\boldsymbol{x}),y\right)$$

ORATO RE O INFORMATIONE, RODELISATION ET D'OPTIMISATION DES SYSTÈMES.

EXAMPLES OF LOSS FUNCTIONS

Binary classification (-1/1)

Characteristic function:
$$\mathcal{L}(f_{\boldsymbol{w}}(x), y) = \mathbb{1}_{yf_{\boldsymbol{w}}(x) \leq 0}$$

- 2 Logistic loss : $\mathcal{L}(f_{\boldsymbol{w}}(x), y) = ln\left(1 + e^{-yf_{\boldsymbol{w}}(x)}\right)$
 - binary cross-entropy: $\mathcal{L}(f_{\boldsymbol{w}}(x), y) = -(ylog(f_{\boldsymbol{w}}(x)) + (1-y)log(1-f_{\boldsymbol{w}}(x)))$

Regression

$$\begin{array}{l} \text{Hinge loss} : \mathcal{L}(f_{\boldsymbol{w}}(x), y) = (1 - yf_{\boldsymbol{w}}(x))_{+} = max \left(0, 1 - yf_{\boldsymbol{w}}(x)\right) \\ \text{MSE} \left(L_{2} \text{ loss}\right) : \mathcal{L}(f_{\boldsymbol{w}}(x), y) = \|f_{\boldsymbol{w}}(x) - y\|^{2} \\ \text{Huber loss} : \mathcal{L}(f_{\boldsymbol{w}}(x), y) = \begin{cases} \frac{1}{2\epsilon} (f_{\boldsymbol{w}}(x) - y)^{2} & \text{if } |f_{\boldsymbol{w}}(x) - y| \geq \epsilon \\ 0 & \text{otherwise} \end{cases} \\ \text{Vapnik loss: } \mathcal{L}(f_{\boldsymbol{w}}(x), y) = \begin{cases} 0 & \text{if } |f_{\boldsymbol{w}}(x) - y| \leq \epsilon \\ |f_{\boldsymbol{w}}(x) - y| - \epsilon & \text{otherwise} \end{cases}$$

LARDRATORE D'INFORMATIONE, De modélisation et d'optimisation des systèmes

FIRST TRAINING ALGORITHM

Here, $\sigma(x) \in \{-1, 1\}$ Given a training set

$$Z = \{ (\boldsymbol{x}_i, y_i), i \in [\![1 \cdots n]\!], \boldsymbol{x}_i \in \mathbb{R}^{d+1}, y_i \in \{-1, 1\} \}$$

this linear operator can be trained for a binary classification problem.

FIRST TRAINING ALGORITHM

Convergence iff:

- ▶ Points lie in a sphere of radius R: $(\forall i \in \llbracket 1 \cdots n \rrbracket) \| \boldsymbol{x}_i \| \leq R$
- The two classes can be separated by a margin:

$$\exists \tilde{\boldsymbol{w}}, \|\tilde{\boldsymbol{w}}\| = 1 \; \exists \gamma > 0, \; (\forall i \in \llbracket 1 \cdots n \rrbracket) \; y_i(\tilde{\boldsymbol{w}}^T \boldsymbol{x}_i) \geq \gamma/2$$

If so, the perceptron stops as soon as it finds a separating hyperplane.

FIRST TRAINING ALGORITHM

Convergence iff:

- ▶ Points lie in a sphere of radius R: $(\forall i \in \llbracket 1 \cdots n \rrbracket) \| \boldsymbol{x}_i \| \leq R$
- The two classes can be separated by a margin:

$$\exists \tilde{\boldsymbol{w}}, \|\tilde{\boldsymbol{w}}\| = 1 \; \exists \gamma > 0, \; (\forall i \in [\![1 \cdots n]\!]) \; y_i(\tilde{\boldsymbol{w}}^T \boldsymbol{x}_i) \ge \gamma/2$$

If so, the perceptron stops as soon as it finds a separating hyperplane. But what if the data is non linearly separable ?

One possible solution: minimize the amount of errors.

$$\ell(oldsymbol{w}) = \sum_{(oldsymbol{x},y)\in Z} \mathcal{L}\left(f_{oldsymbol{w}}(oldsymbol{x}),y
ight)$$

³ Minimize the error w.r.t w.

LANDRATORE D'INFORMATIONE, DE MODÈLISATION ET D'OPTIM SATION DES SYSTÈMES.

Gradient

At a local minimum the gradient is null:
$$\sum_{(x,y)\in Z}
abla_w \mathcal{L}\left(f_w(x),y
ight) = \mathbf{0}$$

Gradient At a local minimum the gradient is null: $\sum_{(x,y)\in Z}
abla_w\mathcal{L}\left(f_w(x),y
ight)=\mathbf{0}$

Gradient Descent Algorithm

Initialization:
$$oldsymbol{w} = oldsymbol{w}_0$$
 , $k=0$

² While (non stop)

2.1
$$\boldsymbol{g}_{k} = \frac{1}{|\boldsymbol{Z}|} \sum_{(\boldsymbol{x}, y) \in \boldsymbol{Z}} \nabla_{\boldsymbol{w}} \mathcal{L}\left(f_{\boldsymbol{w}_{k}}(\boldsymbol{x}), y\right)$$

2.2 $\boldsymbol{w}_{k+1} = \boldsymbol{w}_{k} - \eta \boldsymbol{g}_{k}$
2.3 $k = k + 1$

Additional ressource

See Slides "toy example" and "Optimization for deep Learning".

Algorithm parameters:

- stopping criterion
- > η : learning rate
- Weight initialization

REATORE D'INFORMATIQUE, MODELINATION ET D'OPTIMISATION DES SYSTÈMES

Different learning strategies

- Compute the error over all Z: real gradient descent
- Compute the error on one example only: stochastic gradient descent (SGD)
- Compute the error on a batch of example: batch learning (minibatch)

PATO HE O INFORMATIONE, DOELISATION ET D'OPTIFISATION DES SYSTÈMES.

But...

If we want to accurately classify the data (and allow a good generalization property), we need to find something else...

Stacking linear classifiers

A linear classifier of the form

$$\begin{array}{rccc} f: \mathbb{R}^{d+1} & \to & \mathbb{R} \\ & \boldsymbol{x} & \mapsto & \sigma(\boldsymbol{w}^T \boldsymbol{x} + b) \end{array}$$

Stacking linear classifiers

A linear classifier of the form

$$\begin{array}{rccc} f: \mathbb{R}^{d+1} & \to & \mathbb{R} \\ & & & \\ & & & \\ & & & \\ & & \sigma(\boldsymbol{w}^T\boldsymbol{x} + b) \end{array}$$

can naturally be component-wise extended to any function $f:\mathbb{R}^{d+1}\to\mathbb{R}^c$

And even...

The general structure can be defined using $oldsymbol{x}^{(0)} = oldsymbol{x}$ and

$$(\forall l \in \llbracket 1 \cdots L \rrbracket) \quad \boldsymbol{x}^{(l)} = \sigma(\boldsymbol{w}^{(l)T} \boldsymbol{x}^{(l-1)} + b^{(l)})$$

This is a Multilayer Perceptron (MLP).

MULTILAYER PERCEPTRONS

BUILDING COMPLEX NEURAL NETWORKS

$$h = \sigma(\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b})$$
$$h \in \mathbb{R},$$
$$\boldsymbol{w}, \boldsymbol{x} \in \mathbb{R}^{d+1}$$
$$\boldsymbol{b} \in \mathbb{R}$$
$$\boldsymbol{w} \quad \boldsymbol{b} \quad \boldsymbol$$

LARCHATORIE D'INFORMATIQUE, DE MODÈLISATION ET D'OPTIMISATION DES SYSTÈMES.

BUILDING COMPLEX NEURAL NETWORKS

$$\begin{array}{c}
 h = \sigma(\boldsymbol{w}^{T}\boldsymbol{x} + \boldsymbol{b}) \\
 h \in \mathbb{R}, \\
 \boldsymbol{w}, \boldsymbol{x} \in \mathbb{R}^{d+1} \\
 \boldsymbol{b} \in \mathbb{R}
\end{array} \xrightarrow{\text{Parallel composition}} \qquad \begin{array}{c}
 \boldsymbol{h} = \sigma(\boldsymbol{W}^{T}\boldsymbol{x} + \boldsymbol{b}) \\
 \boldsymbol{h} \in \mathbb{R}^{q} \\
 \boldsymbol{W} \in \mathcal{M}_{d+1,q}(\mathbb{R}) \\
 \boldsymbol{b} \in \mathbb{R}^{q}, \\
 \sigma \text{ element-wise function}
\end{array}$$

LANDRATO HE D'INFORMATIQUE, DE MODELINATION ET D'OPTIMISATION DES SYSTÈMES

BUILDING COMPLEX NEURAL NETWORKS

h is the output of a layer.

LANDRATORE D'INFORMATIONE, DE MODÈLISATION ET D'OPTIMISATION DES SYSTÈMES

σ has to be non linear (otherwise equivalent to a perceptron).

Name	Graph	f	f'
Logistic / sigmoïd		$f(x) = \frac{1}{1 + e^{-x}}$	$f'(x) = f(x) \left(1 - f(x) \right)$
tanh		$f(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f^2(x)$
atan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
ReLU		$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$
Linear exponential		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{if } x < 0\\ 1 & \text{if } x \ge 0 \end{cases}$

LEARNING THE MLP

Expanding the gradient descent

At step k of the gradient descent, need to evaluate

 $\nabla_{\theta} \mathcal{L}\left(f_{\theta}(\boldsymbol{x}), y\right)$

• Evaluation of the total derivatives $\frac{\partial \mathcal{L}}{\partial W_j}$ and $\frac{\partial \mathcal{L}}{\partial b_j}$, $j \in [\![1 \dots L]\!]$

 \Rightarrow Automatic differentiation on the computational graph

Expanding the gradient descent

At step k of the gradient descent, need to evaluate

 $\nabla_{\theta} \mathcal{L}\left(f_{\theta}(\boldsymbol{x}), y\right)$

• Evaluation of the total derivatives $\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{j}}$ and $\frac{\partial \mathcal{L}}{\partial \mathbf{b}_{j}}$, $j \in [\![1 \dots L]\!]$

 \Rightarrow Automatic differentiation on the computational graph

Chain Rule

Let $g: \mathbb{R} \to \mathbb{R}^m$ and $f: \mathbb{R}^m \to \mathbb{R}$

$$f \circ g(x) = f(\boldsymbol{u}) = y$$
 where $\boldsymbol{u} = g(x) = (g_1(x) \dots g_m(x))^T = (u_1 \dots u_m)$

Chain rule:

$$\frac{dy}{dx} = \sum_{j=1}^{m} \frac{\partial y}{\partial u_j} \underbrace{\frac{du_j}{dx}}_{\text{recursive}}$$

LEARNING THE MLP

Automatic differentiation

- MLP = composition of differentiable functions
- The total derivatives of the loss can be evaluated backward, by applying the chain rule recursively over its computational graph.

Automatic differentiation

- MLP = composition of differentiable functions
- The total derivatives of the loss can be evaluated backward, by applying the chain rule recursively over its computational graph.

Automatic differentiation

- Forward pass: values are all computed from inputs to outputs
- 2 Backward pass: the total derivatives are computed by walking through all paths from outputs to parameters in the computational graph and accumulating the terms.

Automatic differentiation

- MLP = composition of differentiable functions
- The total derivatives of the loss can be evaluated backward, by applying the chain rule recursively over its computational graph.

Automatic differentiation

- Forward pass: values are all computed from inputs to outputs
- Backward pass: the total derivatives are computed by walking through all paths from outputs to parameters in the computational graph and accumulating the terms.

See Slides "backpropagation" and "Vanishing aradient".

Example: derivatives with respect to $oldsymbol{W}_1$

- 1 Forward pass: u_1, u_2, u_3 and \hat{y} computed by traversing the graph, given x, W_1 and W_2
- ² Backward pass :

$$\begin{array}{lll} \frac{d\hat{y}}{d\boldsymbol{W}_{1}} & = & \frac{\partial\hat{y}}{\partial\boldsymbol{u}_{3}}\frac{\partial\boldsymbol{u}_{3}}{\partial\boldsymbol{u}_{2}}\frac{\partial\boldsymbol{u}_{2}}{\partial\boldsymbol{u}_{1}}\frac{\partial\boldsymbol{u}_{1}}{\partial\boldsymbol{W}_{1}} \\ & = & \frac{\partial\sigma(\boldsymbol{u}_{3})}{\partial\boldsymbol{u}_{3}}\frac{\partial\boldsymbol{W}_{2}^{T}\boldsymbol{u}_{2}}{\partial\boldsymbol{u}_{2}}\frac{\partial\sigma(\boldsymbol{u}_{1})}{\partial\boldsymbol{u}_{1}}\frac{\partial\boldsymbol{W}_{1}^{T}\boldsymbol{u}_{1}}{\partial\boldsymbol{W}_{1}} \end{array}$$

Evaluating the partial derivatives requires the intermediate values

Theorem (Cybenko 1989; Hornik et al, 1991)

Let σ be a bounded, non-constant continuous function. Let I_d denote the *d*-dimensional hypercube, and $C(I_d)$ denote the space of continuous functions on I_d .

 $(\forall f \in C(I_d))(\forall \epsilon > 0)(\exists q > 0, v_i, \mathbf{w_i}, b_i, i \in \llbracket 1 \dots q \rrbracket)$ such that

$$F(\mathbf{x}) = \sum_{i=1}^{q} v_i \sigma(\mathbf{w}^{\mathrm{T}} \mathbf{x} + b)$$

satisfies

$$\sup_{\mathbf{x}\in I_d} \mid f(\mathbf{x}) - F(\mathbf{x}) \mid < \epsilon$$

LARDRATO HE D'INFORMATIQUE, DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

$$f(x) = x^2, |Z| = 50$$

IRATO RED INFORMATIOLE. DOELISATION ET D'OPTIMISATION DES SYSTÈMES.

A simple example

- |Z| points uniformly sampled (red) over the definition set
- 1 hidden layer MLP, 3 neurons.
- tanh activation function, and linear output neurons
- network output : blue curve
- hidden neurons outputs: dashed curves

Properties

- Guarantees that a single hidden layer network can represent any classification problem in which the boundary is locally linear (smooth)
- Does not inform about good/bad architectures, nor how they relate to the optimization procedure
- Generalizes to any non-polynomial (possibly unbounded) activation function, including the ReLU

Theorem (Barron, 1992)

Let a one-hidden layer MLP with q hidden neurons , p inputs and |Z|=n. The mean integrated square error between the estimated network \hat{F} and the target function f is bounded by

$$O\left(\frac{C_f^2}{q} + \frac{qp}{n}log(n)\right)$$

where C_f measures the global smoothness of f.

Properties

- Combines approximation and estimation errors.
- Provided enough data, guarantees that adding more neurons will result in a better approximation

EFFECT OF DEPTH

Theorem (Montúfar et al, 2014)

A MLP with ReLU as activation functions, p inputs, L hidden layers with $q \ge p$ neurons can compute functions having $\Omega\left(\left(\frac{q}{p}\right)^{(L-1)p}q^p\right)$ linear regions (asymptotic lower bound).

Properties

- The number of linear regions of deep models grows exponentially in L and polynomially in q.
- Even for small values of L and q, deep rectifier models are able to produce substantially more linear regions than shallow rectifier models.

