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LATENT MODELS

A latent variable model relates a set of observable variables ¢ € X to a set of
latent variables h € H

p(a, h) = p(z|h)p(h)

if h are causal factors for = sampling from p(x|h) = generative process from
Hto X.

Inference: given p(z, h), compute

P(z|h)P(h)

p(rjz) = P

Infractable
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GAN

» Generative Adversarial Network
» Two-player game between a discriminator D and a Generator G
» G and D: neural networks
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GAN

€7\

» Generative Adversarial Network
> Two-player game between a discriminator D and a Generator G

» G and D: neural networks

Game

> @ tries to generate synthetic data close to real ones, and aims at
fooling D

» D tries to discriminate between real and fake images.

» Adversarial: G and D have antagonistic objectives.
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GENERATOR AND DISCRIMINATOR

G :R?% — R"

» Function from the latent space to the data space
» MLR CNN, RNN...
> trained so that for h € R?, G(h) ~ Pyata

LIMOS =

6/21



LATENT MODELS DEFINITION TRAINING GAN Zoo IMPLEMENTATION
[e] [e]e]e]e] } 0000000000 [e]e] [e]e]e}

GENERATOR AND DISCRIMINATOR

G :R? - R”

» Function from the latent space to the data space
» MLP CNN, RNN...
> trained so that for b € R, G(h) ~ Pyata

D:R"™ = [0,1]

» Function from the data space producing a probability
> MLR CNN, RNN...
> frained so that for € R™, predicts if x = G(h) or real data

LIMOS | =

@ Clermont
Auvergne

6/21



LATENT MODELS DEFINITION TRAINING GAN Zoo IMPLEMENTATION
[e] 00000 0000000000 [e]e] [e]e]e}

TRAINING

If G is fixed, tfraining D is easy

pick up p real data xy - - - x, € R™

generate p fakes G(h;),i € [1,p], hi ~ Pg

build a training set = Z = {(G(h;), 0), (xz;,1),: € [1,p]}
train D by minimizing the binary cross-entropy

P
L(z) = —% <Z[ZOQD(931') +log(1 — D(G(hi)))]>
i=1

- ,% (EX~pyaral09(D(X)) + Ex wpglog(1 — D(X)))

LIMOS | =

@ Clermont
Auvergne

7/21



LATENT MODELS DEFINITION TRAINING GAN Zoo IMPLEMENTATION
[e] 00000 0000000000 [e]e] [e]e]e}

TRAINING

If Gis fixed, fraining D is easy

pick up p real data @ - - -z, € R™

generate p fakes G(h;),: € [1,p]. hi ~ P

build a fraining set = Z = {(G(h;),0), (x;,1),: € [1,p]}
train D by minimizing the binary cross-entropy

L(2)

P
_i <E[l0gD(wi) + log(1 — D(G(hz)))]>

=1

—% (EX~pyqral09(D(X)) + Exnpglog(l — D(X)))

> Min — logD(z;): maximizing the recognition of tfrue data
> Min —log(l — D(G(h;))): maximizing the recognition of fake data
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TRAINING

But... G wants to fool D and has to be optimized to maximize D’s loss.

Le(D,G) =Exnp,,,,109(D(X)) + Ex~pglog(l — D(X))

» high if D is right
» low if G fools D often
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TRAINING

But... G wants to fool D and has to be optimized to maximize D’s loss.

L&(D,G) = Exnpyy,, l09(D(X)) + Expglog(l — D(X))

> high if D is right
» low if G fools D often

Find an optimal generator G* fooling any D

arg min max c(D,G) argmin c(Dg, G)

where D¢, = arg max La(D,G)
= Find a generator G whose loss against the best discriminator is low.
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TRAINING

Nash equilibrium

* pdata(w)
(V&) DG () = ————————
pdata(m) + Pc (z)
and thus
Lo(D5,C) = Exepy,,,109(D5(X)) + Exopglog(l — D5 (X))
Paiata(T) ) ( Piatent(®) )
= Ex~ l —————— | + Ex~p,l _
XPdata (pm<m>+pc<m> ¥R\ Bara (@) + Pe (@)
ata t ata +
= KL (PuaallP2222P9 ) 4 i1 (| Plete TP ) —rog(a)
=  2JS(Pgata:Pa) — log(4) (IS: Jensen-Shannon divergence)
o (Vegl
LIMO3 @ &
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TRAINING

In practice D is not fully optimized when optimizing G
Alternating gradient step for G and D

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discrimis k, is a hyp ‘We used k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for & steps do

o Sample minibatch of m noise samples {z(1), ..., (™} from noise prior p,(2).
o Sample minibatch of m examples {z(!),...,2(™} from data generating distribution
Paaa(T)-

o Update the discriminator by ascending its stochastic gradient:
Va3 o8 (=) 410 (1- 2 (6 (=)
end for

 Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior p,(2).
o Update the generator by descending its stochastic gradient:

Vo, 2108 (10 (6 ().

end for
Source: Goodfellow et al., 2014
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ILLUSTRATION

T

il 7

Source: Goodfellow et al., 2014

NN

black, dotted line : the data generating distribution
green solid line : the generator distribution

>
>
> blue, dashed line : the discriminator
>

zis sampled uniformly over the domain described by the lower lines
initial values of the data, G and D distributions.

Convergence D — D*

G updating: gradient of D guides G(h) to high probability regions for the
original data

. After several epochs @ wn
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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EWRECEREZ ¢ BB
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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TRAINING PROBLEMS

Oscillation between generator and discriminator loss

IMPLEMENTATION
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» competitive loss between G and D
> no guarantee that the loss will decrease
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TRAINING PROBLEMS

Oscillation between generator and discriminator loss
Mode collapse

IMPLEMENTATION
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» (G tries to fool D.
fools D the most

images is fo detect this single mode
= generator produces examples of a particular kind only
> hard problem to solve

» one possible solution: Wasserstein loss (see next)

> When G is tfrained without updating D, G produces mode z* that

» When D is fraining, the most effective way to detect generated

— Q&
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TRAINING PROBLEMS

Oscillation between generator and discriminator loss
Mode collapse

IMPLEMENTATION
[e]e]e}

Discriminator is too strong, such that the gradient for the generator vanishes

and the generator can’t keep up

» fake samples can be initially so “fake” that the response of D

saturates

> log(1 — D(X)) far in the exponential tail of the sigmoid of D = null

gradient
> Ex~pglog(l — D(X)) — —Exp,log(D(X))
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A COOKING RECIPE FOR IMAGE GENERATION

”After extensive model exploration we identified a family of architectures
that resulted in stable training across a range of datasets and allowed for

training higher resolution and deeper generative models”
Radford et al., 2015

DC-GAN

pooling layers in D — strided convolutions

vy

pooling layers in G — strided transposed
convolutionsin G

use batchnorm in both D and G
remove fully connected hidden layers
use RelLU in G except for the output (tanh)

vvyyy

use LeakyRelLU activation in D for all layers.
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Since 2014, A LOT of models have been developed.

The GAN Zoo

mention the incredibly

You can als K out the same data n a tabular format with functionality to filt
by title

Contributic hrough pull re
tarta discussion

ewsletter for this repo as.

+ 3D-IWGAT 1
+ 3D-Physiet

https://gitl ub‘coWupurovmash/mefgcn—zoo
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SOME MODELS

Some models

A (non exhaustive) selection:
» DCGAN: from MLP to CNN (Radford).
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SOME MODELS

Some models

A (non exhaustive) selection:
» WGAN: Wasserstein GAN .
> JS divergence — Earth-Mover's distance:

W(Pdata Pa) = ey~ [z = yll]

inf E

YEN(Pgata PG)
II(Pgaias Pg): set of all joint distributions v (x, y) whose marginals are
pdata and pG

= v(z,y): how much “mass” must be transported from z to y in order to
transform p ;... 10 Pa.

» More stable training

P less mode collapsing

— MLP_512

R
/

0 100000 200000

P

400000 500000 600000

IMPLEMENTATION
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A (non exhaustive) selection:

» CGAN: Conditional GAN

L&(D,G) =Eznpy,, log(D(zly)) + Ennpg log(l — D(G(R]Y)), y)
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SOME MODELS

Some models

A (non exhaustive) selection:

» InfoGAN: CGAN trained in an unsupervised way = GAN +
maximization of the mutual information between a small subset of the
latent variables and the observation

minmax £6(D, G) = M(y|G(hy), 1(X,Y)=H(X) ~ H(X|Y)

(©) Varying 3 from 2102 on InfoGAN (Rotation)  (d) Varying ey from —2 10 2 on InfoGAN (Width)

1,C2,C3), cw’regoﬁcol, ca,c3 ~ Uniform(—1,1)

LIMOS

urcel.Ghign et al, 2017
Auvergne

18/21



LATENT MODELS
[e]

DEFINITION TRAINING GAN Zoo IMPLEMENTATION
00000 0000000000 oce

[e]e]e}

SOME MODELS

Some models

A (non exhaustive) selection:

» BiGAN: G maps from H to X and from X to H = Adversarial Feature
Learning

data

D
x, E(x) )

Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

Source: Donahue et al., 2017
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SOME MODELS

Some models

A (non exhaustive) selection:

> Paired or unpaired image o image translation: k is replaced by an
image (SRGAN, Pix2Pix, SimGAN,CycleGAN, DiscoGAN,

CoVAE-GAN...)
243

Low-res to high-res Blurry to sharp ‘Thermal to color ‘Synthetic to real

= AN E

LDR to HDR Noisy to clean Image to painting

Ead weamsv to good
Greyscale to color
Day to night Summer to wmm

Source: CVPR 2017 Tutorial
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def G():
g = Sequential()

def D():
d Sequential()

g.compile({loss="binary_crossentropy', optimizer-adam, metrics=['accuracy'])
d.compile(loss="'binary_crossentropy', optimizer-adam, metrics=['accuracy'])

inputs Input(shape=(z_dim, ))

h = G(inputs)

output = D(h)

gan = Model(inputs, output)

gan.compile(loss="'binary_crossentropy', optimizer-adam, metrics=["'accuracy'])

@ P
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range(1, epochs+1):

range(batchCount):

image_batch - x_train[np.random.randint(®, x_train.shape[@], size-BATCH_SIZE)]

noise - np.random.normal(@, 1, size-(BATCH_SIZE, z_dim))

generated_images - g.predict(noise)
X np.concatenate((image_batch, generated_images))

y np.zeros(2+BATCH_SIZE)
y [:BATCH_SIZE] 1

d.trainable = True
d_loss = d.train_on_batch(X, y)

noise np.random.normal(@, 1, size-(BATCH_SIZE, z_dim))
y2 np.ones (BATCH_SIZE)

d.trainable False

g_loss - gan.train_on_batch(noise, y2)

Clermont
Auvergne




NT MODELS SFIN N y N x IMPLEMENTATION
ooe

train_dataset - tf.data.Dataset.from_tensor_slices(x_train).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
epoch range(epochs):

images train_dataset:

noise = tf.random.normal([BATCH_SIZE, z_dim])

tf.GradientTape() G_tape, tf.GradientTape() DIR&1H

g_images = g(noise, training=True)

real_output = d(images, training=True)

fake_output = d(g_images, training=True)

gen_loss = G_loss(fake_output)
disc_loss = D_loss(real_output, fake_output)

G_gradients G_tape.gradient(G_loss, g.trainable_variables)
D_gradients = D_tape.gradient(D_loss, g.trainable_variables)

G_optimizer.apply_gradients(zip(G_gradients, g.trainable_variables))
D_optimizer.apply_gradients(zip(D_gradients, d.trainable_variables))
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