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LATENT MODELS

A latent variable model relates a set of observable variables x ∈ X to a set of
latent variables h ∈ H

p(x,h) = p(x|h)p(h)

if h are causal factors for x⇒ sampling from p(x|h) = generative process from
H to X.

Inference

Inference: given p(x,h), compute

p(h|x) =
p(x|h)p(h)

p(x)

Intractable
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GAN

GAN

I Generative Adversarial Network
I Two-player game between a discriminator D and a Generator G
I G and D: neural networks
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GAN

GAN

I Generative Adversarial Network
I Two-player game between a discriminator D and a Generator G
I G and D: neural networks

Game

I G tries to generate synthetic data close to real ones, and aims at
fooling D

I D tries to discriminate between real and fake images.
I Adversarial: G and D have antagonistic objectives.
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OVERVIEW
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GENERATOR AND DISCRIMINATOR

G : Rd → Rn

I Function from the latent space to the data space
I MLP, CNN, RNN...
I trained so that for h ∈ Rd, G(h) ∼ pdata
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GENERATOR AND DISCRIMINATOR

G : Rd → Rn

I Function from the latent space to the data space
I MLP, CNN, RNN...
I trained so that for h ∈ Rd, G(h) ∼ pdata

D : Rn → [0, 1]

I Function from the data space producing a probability
I MLP, CNN, RNN...
I trained so that for x ∈ Rn, predicts if x = G(h) or real data
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TRAINING

If G is fixed, training D is easy

1 pick up p real data x1 · · ·xp ∈ Rn

2 generate p fakes G(hi), i ∈ [[1, p]], hi ∼ pG

3 build a training set = Z = {(G(hi), 0), (xi, 1), i ∈ [[1, p]]}
4 train D by minimizing the binary cross-entropy

L(Z) = −
1

2p

(
p∑

i=1

[logD(xi) + log(1−D(G(hi)))]

)

= −
1

2

(
EX∼pdata log(D(X)) + EX∼pG log(1−D(X))

)
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TRAINING

If G is fixed, training D is easy

1 pick up p real data x1 · · ·xp ∈ Rn

2 generate p fakes G(hi), i ∈ [[1, p]], hi ∼ pG

3 build a training set = Z = {(G(hi), 0), (xi, 1), i ∈ [[1, p]]}
4 train D by minimizing the binary cross-entropy

L(Z) = −
1

2p

(
p∑

i=1

[logD(xi) + log(1−D(G(hi)))]

)

= −
1

2

(
EX∼pdata log(D(X)) + EX∼pG log(1−D(X))

)
I Min − logD(xi): maximizing the recognition of true data
I Min − log(1−D(G(hi))): maximizing the recognition of fake data
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TRAINING

But... G wants to fool D and has to be optimized to maximize D’s loss.

Loss of G

LG(D,G) = EX∼pdata log(D(X)) + EX∼pG log(1−D(X))

I high if D is right
I low if G fools D often
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TRAINING

But... G wants to fool D and has to be optimized to maximize D’s loss.

Loss of G

LG(D,G) = EX∼pdata log(D(X)) + EX∼pG log(1−D(X))

I high if D is right
I low if G fools D often

Find an optimal generator G∗ fooling any D

G∗ = argmin
G

max
D
LG(D,G) = argmin

G
LG(D∗

G, G)

where D∗
G = argmax

D
LG(D,G)

⇒ Find a generator G whose loss against the best discriminator is low.
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TRAINING

Nash equilibrium

(∀x) D∗
G(x) =

pdata(x)

pdata(x) + pG(x)

and thus

LG(D
∗
G, G) = EX∼pdata log(D

∗
G(X)) + EX∼pG log(1−D

∗
G(X))

= EX∼pdata log

(
pdata(x)

pdata(x) + pG(x)

)
+ EX∼pG log

(
platent(x)

pdata(x) + pG(x)

)
= KL

(
pdata||

pdata + pG
2

)
+KL

(
pG||

pdata + pG
2

)
− log(4)

= 2JS(pdata,pG)− log(4) [JS: Jensen-Shannon divergence]
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TRAINING

In practice D is not fully optimized when optimizing G
Alternating gradient step for G and D

Source: Goodfellow et al., 2014
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ILLUSTRATION

Source: Goodfellow et al., 2014

I black, dotted line : the data generating distribution

I green solid line : the generator distribution

I blue, dashed line : the discriminator

I z is sampled uniformly over the domain described by the lower lines

1 initial values of the data, G and D distributions.

2 Convergence D → D∗

3 G updating: gradient of D guides G(h) to high probability regions for the
original data

4 After several epochs
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EXAMPLES
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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EXAMPLES
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}
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EXAMPLES
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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TRAINING PROBLEMS

1 Oscillation between generator and discriminator loss

I competitive loss between G and D

I no guarantee that the loss will decrease
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TRAINING PROBLEMS

1 Oscillation between generator and discriminator loss

2 Mode collapse

I G tries to fool D.
I When G is trained without updating D, G produces mode x∗ that

fools D the most
I When D is training, the most effective way to detect generated

images is to detect this single mode

⇒ generator produces examples of a particular kind only
I hard problem to solve
I one possible solution: Wasserstein loss (see next)
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TRAINING PROBLEMS

1 Oscillation between generator and discriminator loss

2 Mode collapse

3 Discriminator is too strong, such that the gradient for the generator vanishes
and the generator can’t keep up

I fake samples can be initially so ”fake” that the response of D
saturates

I log(1−D(X)) far in the exponential tail of the sigmoı̈d of D⇒ null
gradient

I EX∼pG log(1−D(X)) −→ −EX∼pG log(D(X))
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A COOKING RECIPE FOR IMAGE GENERATION

”After extensive model exploration we identified a family of architectures
that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models”
Radford et al., 2015

DC-GAN

I pooling layers in D→ strided convolutions

I pooling layers in G→ strided transposed
convolutions in G

I use batchnorm in both D and G

I remove fully connected hidden layers

I use ReLU in G except for the output (tanh)

I use LeakyReLU activation in D for all layers.

Real bedrooms
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A COOKING RECIPE FOR IMAGE GENERATION

”After extensive model exploration we identified a family of architectures
that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models”
Radford et al., 2015

DC-GAN

I pooling layers in D→ strided convolutions

I pooling layers in G→ strided transposed
convolutions in G

I use batchnorm in both D and G

I remove fully connected hidden layers

I use ReLU in G except for the output (tanh)

I use LeakyReLU activation in D for all layers.

epoch 1
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A COOKING RECIPE FOR IMAGE GENERATION

”After extensive model exploration we identified a family of architectures
that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models”
Radford et al., 2015

DC-GAN

I pooling layers in D→ strided convolutions

I pooling layers in G→ strided transposed
convolutions in G

I use batchnorm in both D and G

I remove fully connected hidden layers

I use ReLU in G except for the output (tanh)

I use LeakyReLU activation in D for all layers.

epoch 5
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A COOKING RECIPE FOR IMAGE GENERATION

”After extensive model exploration we identified a family of architectures
that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models”
Radford et al., 2015

DC-GAN

I pooling layers in D→ strided convolutions

I pooling layers in G→ strided transposed
convolutions in G

I use batchnorm in both D and G

I remove fully connected hidden layers

I use ReLU in G except for the output (tanh)

I use LeakyReLU activation in D for all layers.

epoch 10
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A COOKING RECIPE FOR IMAGE GENERATION

”After extensive model exploration we identified a family of architectures
that resulted in stable training across a range of datasets and allowed for
training higher resolution and deeper generative models”
Radford et al., 2015

DC-GAN

I pooling layers in D→ strided convolutions

I pooling layers in G→ strided transposed
convolutions in G

I use batchnorm in both D and G

I remove fully connected hidden layers

I use ReLU in G except for the output (tanh)

I use LeakyReLU activation in D for all layers.

epoch 20
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Since 2014, A LOT of models have been developed.

https://github.com/hindupuravinash/the-gan-zoo
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SOME MODELS

Some models

A (non exhaustive) selection:
I DCGAN: from MLP to CNN (Radford).
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SOME MODELS

Some models

A (non exhaustive) selection:
I WGAN: Wasserstein GAN .

I JS divergence→ Earth-Mover’s distance:

W (pdata,pG) = inf
γ∈Π(pdata,pG)

Ex,y)∼Π [‖x− y‖]

Π(pdata,pG): set of all joint distributions γ(x, y) whose marginals are
pdata and pG

⇒ γ(x, y): how much ”mass” must be transported from x to y in order to
transform pdata to pG.

I More stable training
I less mode collapsing
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SOME MODELS

Some models

A (non exhaustive) selection:
I CGAN: Conditional GAN

LG(D,G) = Ex∼pdata log(D(x|y)) + Eh∼pG log(1−D(G(h|y)), y)
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SOME MODELS

Some models

A (non exhaustive) selection:
I InfoGAN: CGAN trained in an unsupervised way = GAN +

maximization of the mutual information between a small subset of the
latent variables and the observation

min
g

max
D
LG(D,G)− λI(y|G(h, y), I(X,Y ) = H(X)−H(X|Y )

y = (c1, c2, c3), c1: categorical, c2, c3 ∼ Uniform(−1, 1)
source: Chen et al, 2017
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SOME MODELS

Some models

A (non exhaustive) selection:
I BiGAN: G maps from H to X and from X to H ⇒ Adversarial Feature

Learning

Source: Donahue et al., 2017
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SOME MODELS

Some models

A (non exhaustive) selection:
I Paired or unpaired image to image translation: h is replaced by an

image (SRGAN, Pix2Pix, SimGAN,CycleGAN, DiscoGAN,
CoVAE-GAN...)

Source: CVPR 2017 Tutorial
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