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WHAT IS AN AUTOENCODER ?

h DecoderEncoderx x̂

f or pencoder(h|.) g or pdecoder(.|h)

Key ideas

I A neural network trained using unsupervised learning
I Trained to copy its input to its output
I Learns an embedding h

x̂ = g[f(x)] h = f(x)
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WHAT IS AN AUTOENCODER ?

h DecoderEncoderx x̂

f or pencoder(h|.) g or pdecoder(.|h)

Key ideas

I f : Rn → Rq : Encoder (MLP, CNN, RNN,..)
I g : Rq → Rn: Decoder (MLP, CNN, RNN,..)
I h = f(x): Encoded representation of x into a latent space of

dimension q
I q > n: overcomplete / q < n : undercomplete
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LATENT SPACE

Undercomplete autoencoder

(∀x) f(x) lies onto a manifold in Rq
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WHAT IS LEARNED ?

Learn relevant features

I Learning x̂ = x is not useful ...
I Autoencoders are designed to be unable to copy perfectly
I Forced to capture most salient features of training data
I So... what to retain ?
I f and g can be probabilistic mappings pencoder(h|.) and pdecoder(.|h)
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WHAT IS LEARNED ?

What/how to learn ?

I Autoencoders are composed of two neural nets
I ⇒ f = fW 1,b1 and g = gW 2,b2

◦ As usual, definition of a loss function to be minimized
◦ Gradients computation using backpropagation

I Can also be trained using recirculation
◦ Compare activations on x to activations of x̂
◦ Biologically plausible than backpropagation, rarely used
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LOSS FUNCTION

Loss function

min
W1,b1,W2,b2

L(x, g[f(x)]) + λΩ(h)

I L: penalizing g[f(x)]) for being dissimilar from x

I Ω(h): Regularization term

Regularization

Allows
I Sparsity of representation
I Robustness to missing inputs
I Robustness to noise
I ...
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A SIMPLE EXAMPLE

Encoder = Decoder = 1 hidden layer MLP

x ∈ Rn −→
f

h ∈ Rq −→
g

x̂ ∈ Rn

σ1, σ2: element-wise real activation functions, W ∈Mqn(R), b1 ∈ Rq , b2 ∈ Rn

f(x) = σ1(Wx + b1) x̂ = σ2(WTh + b2)

An autoencoder without regularization is trained to minimize

L(x, x̂) = ‖x− x̂‖2 = ‖x− σ2(WT (σ1(Wx + b1) + b2)‖2

If σ2 is linear and q < n, this autoencoder is equivalent to PCA.
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ADDING A LAYER...

Encoder = Decoder = 2 hidden layers MLP... what you will have to do...

σEncoder = {Relu,Relu}
σDecoder= {Relu,sigmoid}
L = MSE
Optimizer = Adam.
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ENCODER/DECODER CAPACITY

Not too much capacity

I too much capacity for f and g⇒ autoencoder can learn identity
without learning any useful information about distribution of data

I if the encoder is very powerful, then q = 1 is possible and the decoder
can learn to map back to the values of specific training examples

Failure if...

I capacity too high (controled by depth)
I q ≥ n (is no strong constraint is applied on the loss)
⇒ Need for regularization.
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REPRESENTATION POWER

Deep Encoder/Decoder can provide many advantages.
Common strategy: greedily pretrain a stack of
shallow autoencoders
I The first layer is trained on input data
→ W1, b1

I Input→ vector of the activation values of
the hidden layer

I The second layer is trained on this vector
→ W2, b2

I Repeat the process
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REGULARIZATION

Regularized autoencoders can help

I Rather than limiting model capacity by keeping encoder/decoder
shallow and q small

I Use of Ω(h) in the loss function
I Forces the autoencoder to have more properties than the simple

identity

Some properties

I Sparsity of representation
I Robustness to missing inputs
I Robustness to noise
I Even in q ≥ n can learn useful information
I ...
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REGULARIZATION

Sparse autoencoder

I Only a few neurons are proned to activate when a single sample is
input into the network

I Can be done using Ω(h) = ‖W‖1 (L1 norm)
I Can be done using the Kullback-Leibler divergence

Contractive autoencoder

I Ω(h) =

q∑
i=1

‖∇xhi‖2

I Learns a function that doesn’t change much when x slightly changes
I Warps space: resists to perturbations of its input
I Encourages to map a neighborhood of input x to a smaller

neighborhood of output points
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DENOISING AUTOENCODERS

Receive a corrupted data as input and trained to predict the original,
uncorrupted data as its output

Min L(x, x̃) = −log pencoder(x|h = f(x)) x̃ corrupted version of x

Performs SGD on Ex̃log pdecoder(x|h = f(x̃))
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DENOISING AUTOENCODERS

I Can learn a corruption process C(x̃|x) and the corresponding denoising
process.

I Learns a vector field: the training samples lie on a low-dimensional
manifold. The vector field estimates the slope of the density of data

I red crosses: training examples
I grey circle: equiprobable

corruption of a training
example

I green arrows: vector field
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DENOISING AUTOENCODERS

Vector field

Encouraging the model to have the same score S = ∇xlog p(x) as the
data distribution at every training point x

Denoising autoencoder with Gaussian p(x | h) estimates the score as

S ≈ g[f(x)]− x

and is trained to minimize
‖g[f(x̃)]− x‖2
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DENOISING AUTOENCODERS

The posterior Px|x̃ can be non-deterministic.
If L(x, x̃) = ‖x− x̃‖2: best reconstruction is E(x | x̃) : very unlikely under Px|x̃

Adversarial networks

Use in place of loss a second network that assesses if the output is realistic

Additional ressource

See lecture ”Generative models (GAN)”.
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SUPER RESOLUTION

Special case of denoising autoencoders, where the encoder’s input is smaller
thant the decoder output.
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SUPER RESOLUTION

For super resolution on real images, use deep nets (here 2 different ResNets, Lim
et al (2017))
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CONTEXT ENCODERS

An interesting work of Pathak et al., 2016
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CONTEXT ENCODERS
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CONTEXT ENCODERS

Additional ressource

See lecture ”Generative models (GAN)”.
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CONTEXT ENCODERS
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LATENT SPACE

Can be used in several ways:
I Once learned, the Encoder provides a concise way to compress the data,

while retaining relevant information

⇒ input to classic machine learning methods
I Directly working in the latent space : analysis, generation with the

decoder...

Additional ressource

See lecture ”Generative models (VAE)”.

23 / 27



INTRODUCTION WHAT IS LEARNED ? REGULARIZATION SOME AUTOENCODERS BACK TO THE LATENT SPACE

MANIFOLD IN LATENT SPACE

Hypothesis

f(∀x) (x) concentrates around a low dimensional manifoldM in Rq .

”Justification”
I x = image of size m× n, each pixel being coded between 0 and 255.
I Set of all imges : 256m×n possible images.
I ”Cat” images” impose constraints on grey level distribution

⇒ Less degrees of freedom in the high dimensional space

Autoencoders aim to learn the structure ofM.
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MANIFOLD IN LATENT SPACE

Manifolds are defined by tangent planes: for x ∈M, specifies how x can
change while staying onM.

Moving along tangent
I gray pixels: don’t change
I white pixels brighten
I black pixels darken
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MANIFOLD IN LATENT SPACE

I Encoder captures the information needed to reconstruct x
→ representation h

I If data generating distribution concentrates near a low- dimensionalM, h
implicitly captures a local coordinate system forM

◦ Only variations tangential toM at x need to correspond to
changes in h
◦ The learned f is only sensitive to changes in the tangent plane,

not to orthogonal changes.
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MANIFOLD IN LATENT SPACE

An example of application: interpolation between images

27 / 27


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



	Introduction
	What is learned ?
	Regularization
	Some autoencoders
	Back to the latent space

	fd@rm@1: 
	fd@rm@0: 


