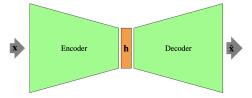
INTRODUCTION 000	What is learned ? 00000	REGULARIZATION	Some autoencoders	BACK TO THE LATENT SPACE 00000



AUTOENCODERS

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

REPATENTE DE INVERTIGER, MEDIFERSION ET DEPENNESATEN DES SYSTÈMES

INTRODUCTION	
●OO	

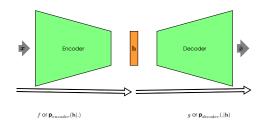
WHAT IS LEARNED ?

REGULARIZATION

Some autoencoders

BACK TO THE LATENT SPACE

WHAT IS AN AUTOENCODER?



Key ideas

- A neural network trained using unsupervised learning
- Trained to copy its input to its output
- \blacktriangleright Learns an embedding h

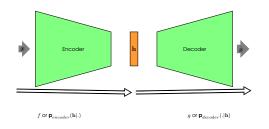
$$\hat{\boldsymbol{x}} = g[f(\boldsymbol{x})] \quad h = f(\boldsymbol{x})$$

INTRODUCTION	
000	

WHAT IS LEARNED ? 00000 REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

WHAT IS AN AUTOENCODER ?



Key ideas

- $f: \mathbb{R}^n \to \mathbb{R}^q$: Encoder (MLP, CNN, RNN,..)
- ▶ $g: \mathbb{R}^q \to \mathbb{R}^n$: Decoder (MLP, CNN, RNN,..)
- $h = f(\mathbf{x})$: Encoded representation of x into a latent space of dimension q
- ▶ q > n: overcomplete / q < n : undercomplete

REPATORE O INFORMATIONE, MODÈLEATION ET D'OPTIMISATION DES SYSTÈMES

What is learned ? 00000 REGULARIZATION 000

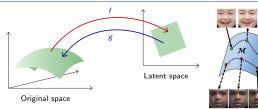
Some autoencoders

BACK TO THE LATENT SPACE 00000

LATENT SPACE

Undercomplete autoencoder

 $(orall oldsymbol{x}) \; f(oldsymbol{x})$ lies onto a manifold in \mathbb{R}^q



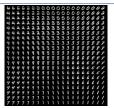
REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

WHAT IS LEARNED ?

Learn relevant features

- Learning $\hat{x} = x$ is not useful ...
- Autoencoders are designed to be unable to copy perfectly
- Forced to capture most salient features of training data
- So... what to retain ?
- f and g can be probabilistic mappings $\mathbf{p}_{encoder}(\mathbf{h}|.)$ and $\mathbf{p}_{decoder}(.|\mathbf{h})$



INTRODUCTION	
000	

Some autoencoders

BACK TO THE LATENT SPACE 00000

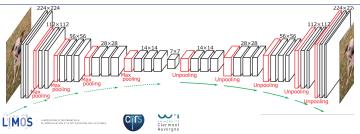
WHAT IS LEARNED ?

What/how to learn ?

Autoencoders are composed of two neural nets

$$\blacktriangleright$$
 \Rightarrow $f = f_{W_1, b_1}$ and $g = g_{W_2, b_2}$

- As usual, definition of a loss function to be minimized
- Gradients computation using backpropagation
- Can also be trained using recirculation
 - $\circ\,$ Compare activations on $oldsymbol{x}$ to activations of $\hat{oldsymbol{x}}$
 - Biologically plausible than backpropagation, rarely used



INTRODUCTION	
000	

What is learned ?

REGULARIZATION 000

Some autoencoders

BACK TO THE LATENT SPACE 00000

LOSS FUNCTION

Loss function

$$\min_{W_1, \boldsymbol{b}_1, W_2, \boldsymbol{b}_2} L(\boldsymbol{x}, g[f(\boldsymbol{x})]) + \lambda \Omega(\boldsymbol{h})$$

• L: penalizing g[f(x)]) for being dissimilar from x

• $\Omega(h)$: Regularization term

Regularization

Allows

- Sparsity of representation
- Robustness to missing inputs
- Robustness to noise

ANCRATORIE O INFORMATIQUE, E MODELISATION ET O OPTIMISATION DES SYSTÈMES

INTRODUCTION	WHAT IS LEARNED ?	Regulari
000	00000	000

Some autoencoders

BACK TO THE LATENT SPACE

A SIMPLE EXAMPLE

Encoder = Decoder = 1 hidden layer MLP

$$oldsymbol{x} \in \mathbb{R}^n \xrightarrow{f} oldsymbol{h} \in \mathbb{R}^q \xrightarrow{g} \hat{oldsymbol{x}} \in \mathbb{R}^n$$

 σ_1, σ_2 : element-wise real activation functions, $W \in \mathcal{M}_{an}(\mathbb{R}), b_1 \in \mathbb{R}^q, b_2 \in \mathbb{R}^n$

$$f(\boldsymbol{x}) = \sigma_1(W\boldsymbol{x} + b_1) \quad \hat{\boldsymbol{x}} = \sigma_2(W^T\boldsymbol{h} + b_2)$$

An autoencoder without regularization is trained to minimize

$$L(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|^2 = \|\boldsymbol{x} - \sigma_2(W^T(\sigma_1(W\boldsymbol{x} + b_1) + b_2)\|^2$$

If σ_2 is linear and q < n, this autoencoder is equivalent to PCA.

UNDRATO PRE D'INFORMATIQUE, E MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES.

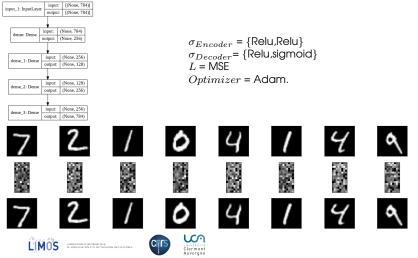
INTRODUCTION	
000	

What is learned ? 0000● REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

ADDING A LAYER...

Encoder = Decoder = 2 hidden layers MLP... what you will have to do...



REGULARIZATION •00 Some autoencoders

BACK TO THE LATENT SPACE 00000

ENCODER/DECODER CAPACITY

Not too much capacity

- ▶ too much capacity for f and g ⇒ autoencoder can learn identity without learning any useful information about distribution of data
- if the encoder is very powerful, then q = 1 is possible and the decoder can learn to map back to the values of specific training examples

Failure if...

- capacity too high (controled by depth)
- $q \ge n$ (is no strong constraint is applied on the loss)
- \Rightarrow Need for regularization.

INTRODUCTION	
000	

Some autoencoders

BACK TO THE LATENT SPACE 00000

REPRESENTATION POWER

Deep Encoder/Decoder can provide many advantages. Common strategy: greedily pretrain a stack of shallow autoencoders

- The first layer is trained on input data $\rightarrow W_1, b_1$
- \blacktriangleright Input \rightarrow vector of the activation values of the hidden layer
- The second layer is trained on this vector $\rightarrow W_2, b_2$
- Sparsity Decoder Encoder Sparsity Decoder Encoder Sparsity Decoder Encoder Sparsity Decoder Encoder

Repeat the process

INTRODUCTION	
000	

Some autoencoders

BACK TO THE LATENT SPACE 00000

REGULARIZATION

Regularized autoencoders can help

- Rather than limiting model capacity by keeping encoder/decoder shallow and q small
- Use of $\Omega(h)$ in the loss function
- Forces the autoencoder to have more properties than the simple identity

Some properties

- Sparsity of representation
- Robustness to missing inputs
- Robustness to noise
- Even in $q \ge n$ can learn useful information

INTRODUCTION	
000	

Some autoencoders

BACK TO THE LATENT SPACE 00000

REGULARIZATION

Sparse autoencoder

- Only a few neurons are proned to activate when a single sample is input into the network
- Can be done using $\Omega(\mathbf{h}) = ||W||_1$ (L_1 norm)
- Can be done using the Kullback-Leibler divergence

Contractive autoencoder

$$\blacktriangleright \ \Omega(\boldsymbol{h}) = \sum_{i=1}^{q} \|\nabla_{x} h_{i}\|^{2}$$

- \blacktriangleright Learns a function that doesn't change much when x slightly changes
- Warps space: resists to perturbations of its input
- Encourages to map a neighborhood of input *x* to a smaller neighborhood of output points

REGULARIZATION 000 Some autoencoders

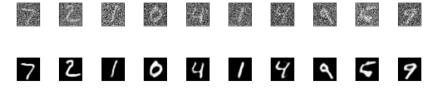
BACK TO THE LATENT SPACE 00000

DENOISING AUTOENCODERS

Receive a corrupted data as input and trained to predict the original, uncorrupted data as its output

 $Min \ L(\boldsymbol{x}, \tilde{\boldsymbol{x}}) = -log \ \boldsymbol{\mathsf{p}}_{encoder}(\boldsymbol{x} | \boldsymbol{h} = f(\boldsymbol{x})) \quad \tilde{\boldsymbol{x}} \text{ corrupted version of } \boldsymbol{x}$

Performs SGD on $\mathbb{E}_{\tilde{\boldsymbol{x}}} log \ \mathbf{p}_{decoder}(\boldsymbol{x} | \boldsymbol{h} = f(\tilde{\boldsymbol{x}}))$



LARDRATCINE O INFORMATIONE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

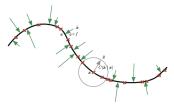
REGULARIZATION

Some autoencoders

BACK TO THE LATENT SPACE 00000

DENOISING AUTOENCODERS

- Learns a vector field: the training samples lie on a low-dimensional manifold. The vector field estimates the slope of the density of data



- red crosses: training examples
- grey circle: equiprobable corruption of a training example
- green arrows: vector field

What is learned ? 00000 REGULARIZATION

Some autoencoders

BACK TO THE LATENT SPACE 00000

DENOISING AUTOENCODERS

Vector field

Encouraging the model to have the same score $S = \nabla_x \log \mathbf{p}(x)$ as the data distribution at every training point x

Denoising autoencoder with Gaussian $\mathbf{p}(x \mid h)$ estimates the score as

$$S \approx g[f(\boldsymbol{x})] - \boldsymbol{x}$$

and is trained to minimize

 $\|g[f(\tilde{\boldsymbol{x}})] - \boldsymbol{x}\|^2$

ARDRATORE O INFORMATIONE, E MODELIKATION ET D'OPTIMISATION DES SYSTÈMES.

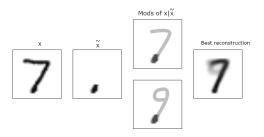
WHAT IS LEARNED ? 00000 REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

DENOISING AUTOENCODERS

The posterior $\mathbf{P}_{x|\tilde{x}}$ can be non-deterministic.

If $L(x, \tilde{x}) = \|x - \tilde{x}\|^2$: best reconstruction is $\mathbb{E}(x \mid \tilde{x})$: very unlikely under $P_{x \mid \tilde{x}}$



Adversarial networks

Use in place of loss a second network that assesses if the output is realistic

Additional ressource

See lecture "Generative models (GAN)".

Regularization 000

Some autoencoders

BACK TO THE LATENT SPACE 00000

SUPER RESOLUTION

Special case of denoising autoencoders, where the encoder's input is smaller thant the decoder output.

Original	Original
721041495906	721041495906
901597349665	901597349665
407401313472	407401313472
Input	Input
721041425906 901597349645	7210414
407401313472	407401313472
Bilinear interpolation	Autoencoder output
721041425906	721041495906
901597849665	901597849665
407401313472	407401313472

WHAT IS LEARNED ?

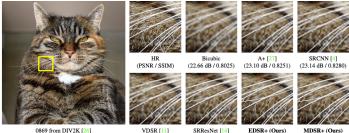
REGULARIZATION

Some autoencoders 000000000000

BACK TO THE LATENT SPACE

SUPER RESOLUTION

For super resolution on real images, use deep nets (here 2 different ResNets, Lim et al (2017))



(23.36 dB / 0.8365)

SRResNet [14] (23.71 dB / 0.8485)

(23.90 dB / 0.8558)

(23.89 dB / 0.8563)

URDRATO RE DI INFORMATI DUR, E MODEL DATION ET DI OPTIMISATION DES SYSTÈMES.

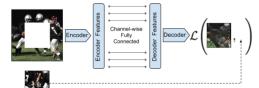
What is learned ? 00000 REGULARIZATION 000

Some autoencoders

BACK TO THE LATENT SPACE 00000

CONTEXT ENCODERS

An interesting work of Pathak et al., 2016



(a) Central region

(b) Random block

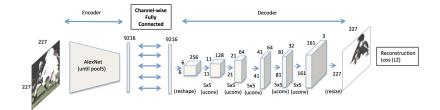
LANDRATOINE OTIMIORMATIQUE, DE MODELINATION ET D'OPTIMINATION DES SYSTÈMES.

What is learned ? 00000 REGULARIZATION 000

Some autoencoders

BACK TO THE LATENT SPACE 00000

CONTEXT ENCODERS



INTRODUCTION	
000	

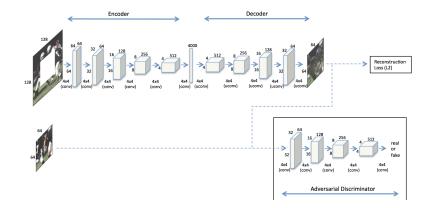
WHAT IS LEARNED ?

REGULARIZATION

Some autoencoders 0000000000

BACK TO THE LATENT SPACE

CONTEXT ENCODERS



See lecture "Generative models (GAN)".

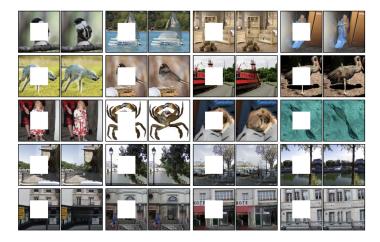
What is learned ? 00000

Regularization

Some autoencoders

BACK TO THE LATENT SPACE

CONTEXT ENCODERS



LARDRATORE D'INFORMATIQUE, DE MODÉLINATION ET D'OPTIMISATION DES SYSTÈMES.

REGULARIZATION 000

Some autoencoders

BACK TO THE LATENT SPACE •0000

LATENT SPACE

Can be used in several ways:

- Once learned, the Encoder provides a concise way to compress the data, while retaining relevant information
- \Rightarrow input to classic machine learning methods
- Directly working in the latent space : analysis, generation with the decoder...

Additional ressource

See lecture "Generative models (VAE)".

REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

MANIFOLD IN LATENT SPACE

Hypothesis

 $f(orall m{x}) \; (m{x})$ concentrates around a low dimensional manifold $\mathcal M$ in $\mathbb R^q$.

"Justification"

- $\blacktriangleright x$ = image of size $m \times n$, each pixel being coded between 0 and 255.
- Set of all imges : $256^{m \times n}$ possible images.
- "Cat" images" impose constraints on grey level distribution
- \Rightarrow Less degrees of freedom in the high dimensional space

Autoencoders aim to learn the structure of \mathcal{M} .

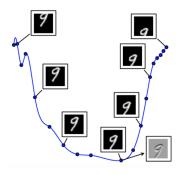
IDRATO RE O INFORMATIONE, MODELISATION ET O OPTIMISATION DES SYSTÈME

What is learned ? 00000 REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

MANIFOLD IN LATENT SPACE

Manifolds are defined by tangent planes: for $x \in \mathcal{M}$, specifies how x can change while staying on \mathcal{M} .



Moving along tangent

- gray pixels: don't change
- white pixels brighten
- black pixels darken

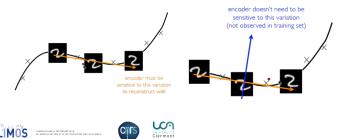
ORATO ME D INFORMATIONE, REDELISATION ET D OPTIMISATION DES SYSTÈMES.

WHAT IS LEARNED ? 00000 REGULARIZATION 000 Some autoencoders

BACK TO THE LATENT SPACE 00000

MANIFOLD IN LATENT SPACE

- \blacktriangleright Encoder captures the information needed to reconstruct x ightarrow representation h
- If data generating distribution concentrates near a low-dimensional M, h implicitly captures a local coordinate system for M
 - $\circ\,$ Only variations tangential to ${\cal M}$ at x need to correspond to changes in h
 - The learned *f* is only sensitive to changes in the tangent plane, not to orthogonal changes.



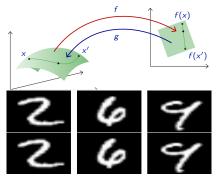
WHAT IS LEARNED ? 00000 Regularization 000

Some autoencoders

Back to the latent space $0000 \bullet$

MANIFOLD IN LATENT SPACE

An example of application: interpolation between images



KORATO ME O INFORMATIQUE, MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

CNL