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SEQUENTIAL DATA

Sequential data

» Timeseries data (femperature, pressure, stock market...)
» Speech / music

> Videos
zs MWWW ”\“WP\HWM[A *WMW‘M("MMWWﬂrMMW\WJWNWMJ

Problem!

> Arbitrary length
» Huge number of parameter for a model ?
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PROPERTIES

Need for memory

» Datain a sequence is not identically, independently distributed
» Need for a context, thus for memory

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.
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PROPERTIES

Need for memory

» Datain a sequence is not identically, independently distributed
» Need for a context, thus for memory

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.

How to model sequential data, context and memory ?
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DATA REPRESENTATION

Neural nets need numerical values, not words

small+ ~boy
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DATA REPRESENTATION

Neural nets need numerical values, not words

0.4 0.1
small>+ 3 . #boy — e o= |
‘ 0.1 - 0.8
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DATA REPRESENTATION

Neural nets need numerical values, not words

0.4 0.1
~boy =
0.1 " 0.8

small~+

» —

Paul, small, hungry,
he, goes, restau-
rant, and, lot,...
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DATA REPRESENTATION

Neural nets need numerical values, not words
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DATA REPRESENTATION

Neural nets need numerical values, not words

0.4 0.1
small> < . #boy = . =
e 0.1 ‘ 0.8
Paul, small, hungry, a— 1 a=(1,0...0)
he, goes, restau- -
rant, and, lof,... FD.C?Y—> 2 P_O.y D)
small— 16 small = (0.0.....1)
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DATA REPRESENTATION

Why not directly using the index as a descriptor ?
Example : distance between “a” and “small”
Indexes: d2(”a”,” small”) = (16 — 1)2 = 225
One hot encoding: d2(”a”,” small”)? = 2

» Indexes : distance depends on the values of the index

RNN TRAINING RNN
000000 0000

» One hot encoding : whatever two different words, they have the same

distance if they are different
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EMBEDDINGS

Learns word embeddings by estimating the likelihood that a given word is
surrounded by other words.
Bag of words, skip Gram.

» One-hot vectors: » One-hot vectors:
high-dimensional and constrained by the
sparse corpus

> word embeddings: > word embeddings:
low-dimensional and Generalization,
dense. capabilities.
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PROCESSING INDIVIDUAL DATA POINT

“Paul”
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PROCESSING INDIVIDUAL DATA POINT

“Paul” “ig”
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PROCESSING INDIVIDUAL DATA POINT
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PROCESSING INDIVIDUAL DATA POINT

“Paul” "ig” g o “lot”
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PROCESSING INDIVIDUAL DATA POINT
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PROCESSING INDIVIDUAL DATA POINT

® ®

“Paul” 8" “a” . “lot”
ge = f(@e)
Paul is a smal .. He goes to the
t 0 1 2 3 . 8 9 10 1

zg depends on zg = with this model, no possible relation.
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INTUITION: NEURONS WITH RECURRENCE

@

gt = f(xt, he—1)
() () @5 ()
> 1z input
> ¢ output
> hi—q1: past memory
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FOLDED VERSION

Recurrent
cell
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RECURRENT NEURAL NETWORKS

Apply arecurrence relation each time step to process
asequence

(Vt > 0) he = fw (e, hi—1)

> h;: current cell state
Recurrent
cell > fw: neural network with parameter matrix W
> oz input
»> h:_1: old cell state (memory)
To keep memory, W is shared through fime.

@
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RECURRENT NEURAL NETWORKS

@5 Update hidden state
Recurlrlem Compute output vector
cel

he = tanh(WE 2t + W he—1)

9¢ = Wil b

@ Clermont
Auvergne

LIMOS

9/18



INTRODUCTION DATA REPRESENTATION MEMORY AND CONTE}
[e] 0000 [e]e]e} O@0000 0000

FOLDED VERSION- FORWARD PASS

Whn

Recurrent
cell
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FOLDED VERSION- FORWARD PASS
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Whn

Recurrent
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KERAS IMPLEMENTATION FROM SCRATCH

class RNNFromScratch(tf.keras.layers.Layer):
def __init_ (self,nb_units,dim_in,dim_out):
super (RNNFromScratch,selg).__init_ ()
self.Whh = self.add_weights([nb_units,nb_units])
self.Wxh = self.add_weights([nb_units,dim_in])
self.Why = self.add_weights([dim_out,nb_units])

self.h = tf.zeros([nb_units,1])

call(self,x):

self.h = tf.math.tanh(self.Wxh+x + self.Whhtself.h)
y = self.Why+self.h

y,self.h

LIMOS
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KERAS IMPLEMENTATION: S1MPLERNN

SimpleRNN layer
SimpleRNN class

tf.keras. layers.SimpleRNN(
units,
activation="tanh",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer-None,
recurrent_regularizer=None,
bias_regularizer-None,
activity_regularizer-None,
kernel_constraint=None,
recurrent_constraint-None,
bias_constraint-None,
dropout=0.0,
recurrent_dropout=0.0,
return_sequences=False,
return_state-False,
go_backwards=False,
stateful-False,
unroll=False,

kwargs

Auvergne
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SOME ARCHITECTURES
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One to many
Captioning, music generation

MEMORY AND CONTEXT RNN
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Many to one
Sentiment analysis

TRAINING RNN
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©

6 © ©
©-
6 6 &6

Many to Many
Video annotation
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Many to many
Translation
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UNFOLDED VERSION- BACKWARD PASS

Whp
Recurrent

cell
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UNFOLDED VERSION- BACKWARD PASS

Computing the gradient w.r.t. hg involves

» many factors of W,
» repeated gradient computation

Many high values

» Exploding gradients
» Gradient clipping

= Bouncing and unstable
optimization

In all cases, possibility to loose long-term dependencies.

@ Clermont
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UNFOLDED VERSION- BACKWARD PASS

Computing the gradient w.r.t. hg involves

» many factors of W,
» repeated gradient computation

Many high values Many small values

> Exploding gradients » Vanishing gradients
» Gradient clipping = No gradient at all
= Bouncing and unstable

optimization

In all cases, possibility to loose long-term dependencies.
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BACKPROPAGATION THROUGH TIME

BPTT

» Basically chain rule as in classical backpropagation
> a bit more tricky, since gradients survive over time

Implementation

Already implemented, in Keras, using the classical t rain method.

LIMOS | =

@ Clermont
Auvergne

17/18



INTRODUCTION DATA REPRESENTATION MEMORY AND CONTEXT RNN TRAINING RNN
[e]e]e} 000000 oooe

[e] 0000

WHAT’S NEXT ?

» x; goes t times through tanh.
= The influence of z; is much lesser than the one of z;
» W is shared: the weight associated to h; doesn’t
compensate this loss of memory
= RNN — short memory (the deeper the shorter)

Vanishing/exploding gradients

Some alternatives, improvments: LSTM, GRU... See next lecture !
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