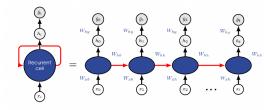
DATA REPRESENTATION

Memory and context 000

RNN 000000 TRAINING RNN 0000



RECURRENT NEURAL NETWORKS

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

REPATORE DIMORPHATIQUE, MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

INTRODUCTION	DATA REPRESENTATION	Memory and context	RNN	TRAINING RNN
•	0000	000	000000	0000

SEQUENTIAL DATA



Problem!

- Arbitrary length
- Huge number of parameter for a model ?

DATA REPRESENTATION • 0000 Memory and context

RNN 000000 TRAINING RNN 0000

PROPERTIES

Need for memory

- > Data in a sequence is not identically, independently distributed
- Need for a context, thus for memory

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.

DATA REPRESENTATION • 0000 Memory and context

RNN 000000 TRAINING RNN 0000

PROPERTIES

Need for memory

- > Data in a sequence is not identically, independently distributed
- Need for a context, thus for memory

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.

THE question

How to model sequential data, context and memory?

INTRODUCTION	
0	

Data representation $0 \bullet 00$

Memory and context

RNN 000000 TRAINING RNN 0000

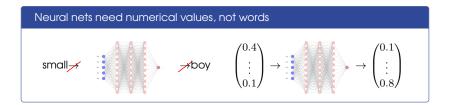
DATA REPRESENTATION

INTRODUCTION	
0	

Memory and context

RNN 000000 TRAINING RNN 0000

DATA REPRESENTATION

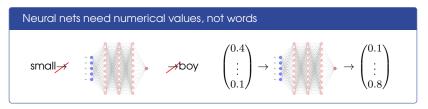


INTRODUCTION	
0	

Memory and context

RNN 000000 TRAINING RNN 0000

DATA REPRESENTATION



Corpus

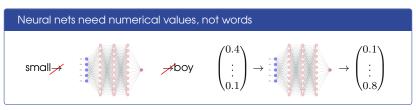
Paul, small, hungry, he, goes, restaurant, and, lot,...

INTRODUCTION	
0	

Memory and context

RNN 000000 TRAINING RNN 0000

DATA REPRESENTATION



Corpus	Indexing
Paul, small, hungry, he, goes, restau- rant, and, lot,	$a \rightarrow 1$ boy $\rightarrow 2$ small $\rightarrow 16$

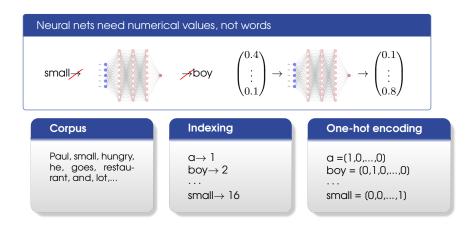
RORATO RE O INFORMATIOLE, MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

INTRODUCTION	
0	

Memory and context

RNN 000000 TRAINING RNN 0000

DATA REPRESENTATION



ROPATO NE O INFORMATIONE, MODELISATION ET O OPTIMISATION DES SYSTÈMES.

RNN 000000 TRAINING RNN 0000

DATA REPRESENTATION

Why not directly using the index as a descriptor ?

Example : distance between "a" and "small"

- 1 Indexes: $d^2("a", "small") = (16-1)^2 = 225$
- ² One hot encoding: $d^2("a","small")^2 = 2$
- Indexes : distance depends on the values of the index
- One hot encoding : whatever two different words, they have the same distance if they are different

INTRODUCTION	
0	

RNN 000000 TRAINING RNN 0000

EMBEDDINGS

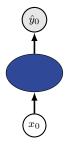
Word2vec

Learns word embeddings by estimating the likelihood that a given word is surrounded by other words. Bag of words, skip Gram.

Dimensions	Generalization
 One-hot vectors:	 One-hot vectors:
high-dimensional and	constrained by the
sparse	corpus
 word embeddings:	 word embeddings:
low-dimensional and	Generalization,
dense.	capabilities.

INTRODUCTION	DATA REPRESENTATION	MEMORY AND CONTEXT	RNN	TRAINING RNN
0	0000	•00	000000	0000

PROCESSING INDIVIDUAL DATA POINT

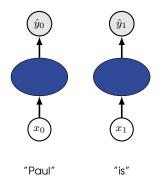


"Paul"

LARDRATOIRE OTINFORMATIOLIE, DE MODÈLISATION ET D'OPTIMISATION DES SYSTÈMES.

INTRODUCTION	DATA REPRESENTATION	MEMORY AND CONTEXT	RNN	TRAINING RNN
0	0000	•00	000000	0000

PROCESSING INDIVIDUAL DATA POINT



LARDRATOIRE OTIMPORHATINGE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

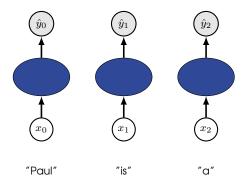
INTRODUCTION	
0	

Memory and context $\bullet \circ \circ$

RNN

TRAINING RNN 0000

PROCESSING INDIVIDUAL DATA POINT



LARDRATOINE O INFORMATIOLE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

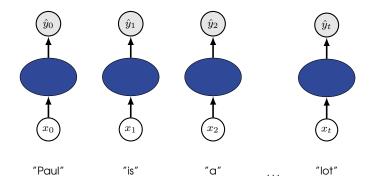
INTRODUCTION	
0	

Memory and context $\bullet \circ \circ$

RNN

TRAINING RNN 0000

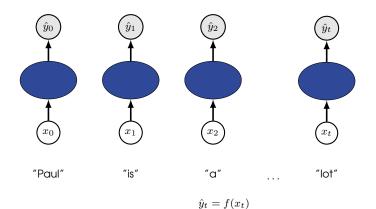
PROCESSING INDIVIDUAL DATA POINT



LANDRATOINE O INFORMATIOLE, DE MODELISATION ET O OPTIMISATION DES SYSTÈMES

INTRODUCTION	DATA REPRESENTATION	Memory and context	RNN
0	0000	● ○ ○	000000

PROCESSING INDIVIDUAL DATA POINT



LANDRATOINE OTIMIORMATIQUE, DE MODELINATION ET D'OPTIMINATION DES SYSTÈMES.

CINC

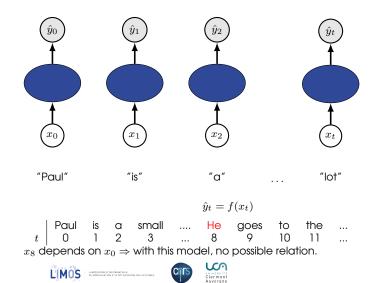
TRAINING RNN

INTRODUCTION	DATA REPRESEN
0	0000

RNN

TRAINING RNN 0000

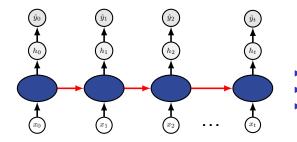
PROCESSING INDIVIDUAL DATA POINT



INTRODUCTION	
0	

RNN 000000 TRAINING RNN 0000

INTUITION: NEURONS WITH RECURRENCE



$$\hat{y}_t = f(x_t, h_{t-1})$$

•
$$x_t$$
 : input

- \hat{y}_t : output
- \blacktriangleright h_{t-1} : past memory

LANDRATO HE D'INFORMATIQUE, DE MODELINATION ET D'OPTIMISATION DES SYSTÈMES

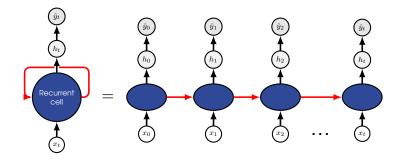
DATA REPRESENTATION 0000

Memory and context

RNN

TRAINING RNN 0000

FOLDED VERSION

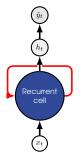


LARCEATORE D'INFORMATIQUE, de modélisation et d'optimisation des systèmes

DATA REPRESENTATION 0000 Memory and context

RNN 000000 TRAINING RNN 0000

RECURRENT NEURAL NETWORKS



Apply a recurrence relation each time step to process a sequence

 $(\forall t \ge 0)$ $h_t = f_W(x_t, h_{t-1})$

- h_t: current cell state
- f_W : neural network with parameter matrix W
- $\blacktriangleright x_t$: input
- h_{t-1} : old cell state (memory)

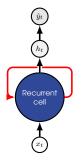
To keep memory, W is shared through time.

DATA REPRESENTATION

Memory and context

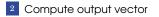
RNN •00000 TRAINING RNN 0000

RECURRENT NEURAL NETWORKS



1 Update hidden state

$$h_t = tanh(W_{xh}^T x_t + W_{hh}^T h_{t-1})$$

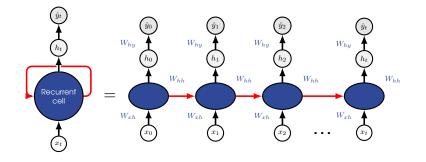


$$\hat{y}_t = W_{hy}^T h_t$$

INTRODUCTION	DATA REPRESENTATION	Memory and context	RNN
0	0000	000	00000

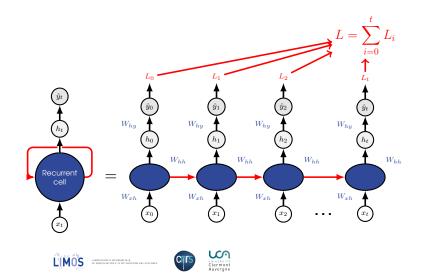
TRAINING RNN

FOLDED VERSION- FORWARD PASS



INTRODUCTION	DATA REPRESENTATION	Memory and context	RNN	TRAINING RNN
0	0000	000	00000	0000

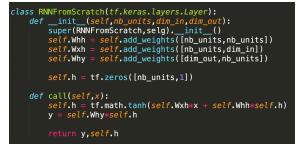
FOLDED VERSION- FORWARD PASS



DATA REPRESENTATION

Memory and context 000 RNN 000€00 TRAINING RNN 0000

KERAS IMPLEMENTATION FROM SCRATCH



DATA REPRESENTATION 0000 Memory and context

RNN 0000000 TRAINING RNN 0000

KERAS IMPLEMENTATION: SIMPLERNN

SimpleRNN layer

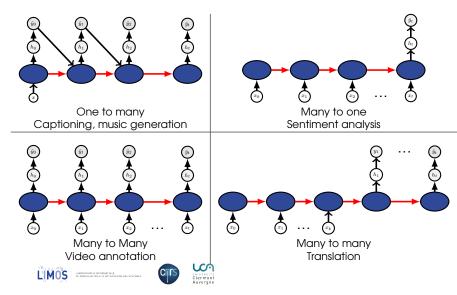
SimpleRNN class

tf.keras.layers.SimpleRNN(units, activation="tanh", use_bias=True, kernel initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0. recurrent_dropout=0.0, return_sequences=False, return_state=False, qo_backwards=False, stateful=False, unroll=False. **kwargs

DATA REPRESENTATION 0000 Memory and context

RNN 000000 TRAINING RNN 0000

Some architectures



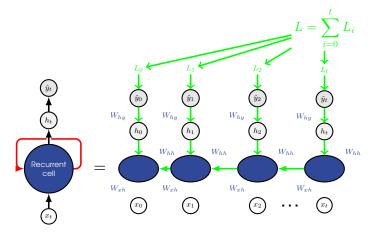
Data representation 0000

Memory and context

RNN

TRAINING RNN 0000

UNFOLDED VERSION- BACKWARD PASS



RORATO NE O INFORMATIOLE. MODÈLIGATION ET O OPTIMISATION DES SYSTÈMES

CIN

RNN 000000 TRAINING RNN 0€00

UNFOLDED VERSION- BACKWARD PASS

Computing the gradient w.r.t. h_0 involves

- many factors of W_{hh}
- repeated gradient computation

Many high values

- Exploding gradients
- Gradient clipping
- ⇒ Bouncing and unstable optimization

In all cases, possibility to loose long-term dependencies.

RNN 000000 TRAINING RNN 0000

UNFOLDED VERSION- BACKWARD PASS

Computing the gradient w.r.t. h_0 involves

- many factors of $oldsymbol{W}_{hh}$
- repeated gradient computation

Many high values

- Exploding gradients
- Gradient clipping
- ⇒ Bouncing and unstable optimization

Many small values

- Vanishing gradients
- \Rightarrow No gradient at all

In all cases, possibility to loose long-term dependencies.

INTRODUCTION	
0	

Memory and context

RNN 000000 TRAINING RNN 00●0

BACKPROPAGATION THROUGH TIME

BPTT

- Basically chain rule as in classical backpropagation
- a bit more tricky, since gradients survive over time

Implementation

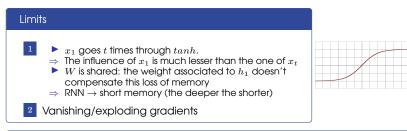
Already implemented, in Keras, using the classical train method.

INTRODUCTION	
0	

Memory and context

RNN 000000 TRAINING RNN 0000

WHAT'S NEXT ?



Limits

Some alternatives, improvments: LSTM, GRU... See next lecture !

