
INTRODUCTION DATA REPRESENTATION MEMORY AND CONTEXT RNN TRAINING RNN

RECURRENT NEURAL NETWORKS

Vincent Barra
LIMOS, UMR 6158 CNRS, Université Clermont Auvergne
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SEQUENTIAL DATA

Sequential data

I Timeseries data (temperature, pressure, stock market...)
I Speech / music
I Videos
I ...

Problem!

I Arbitrary length
I Huge number of parameter for a model ?
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PROPERTIES

Need for memory

I Data in a sequence is not identically, independently distributed
I Need for a context, thus for memory

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.
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PROPERTIES

Need for memory

I Data in a sequence is not identically, independently distributed
I Need for a context, thus for memory

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.

THE question

How to model sequential data, context and memory ?
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DATA REPRESENTATION

Neural nets need numerical values, not words

small��→ ��→boy
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DATA REPRESENTATION

Neural nets need numerical values, not words

small��→ ��→boy

0.4
...

0.1

→ →

0.1
...

0.8



Corpus

Paul, small, hungry,
he, goes, restau-
rant, and, lot,...

Indexing

a→ 1
boy→ 2
· · ·
small→ 16

One-hot encoding

a =[1,0,...,0]
boy = [0,1,0,...,0]
· · ·
small = [0,0,...,1]
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DATA REPRESENTATION

Why not directly using the index as a descriptor ?

Example : distance between ”a” and ”small”

1 Indexes: d2(”a”, ”small”) = (16− 1)2 = 225

2 One hot encoding: d2(”a”, ”small”)2 = 2

I Indexes : distance depends on the values of the index
I One hot encoding : whatever two different words, they have the same

distance if they are different
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EMBEDDINGS

Word2vec

Learns word embeddings by estimating the likelihood that a given word is
surrounded by other words.
Bag of words, skip Gram.

Dimensions

I One-hot vectors:
high-dimensional and
sparse

I word embeddings:
low-dimensional and
dense.

Generalization

I One-hot vectors:
constrained by the
corpus

I word embeddings:
Generalization,
capabilities.
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PROCESSING INDIVIDUAL DATA POINT

ŷ0
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PROCESSING INDIVIDUAL DATA POINT

ŷ0

x0

”Paul”

ŷ1

x1

”is”

ŷ2

x2

”a” · · ·

ŷt

xt

”lot”

ŷt = f(xt)

Paul is a small .... He goes to the ...
t 0 1 2 3 ... 8 9 10 11 ...

x8 depends on x0 ⇒ with this model, no possible relation.
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INTUITION: NEURONS WITH RECURRENCE

h0

ŷ0

x0

h1

ŷ1

x1

h2

ŷ2

x2

ht

ŷt

xt. . .

ŷt = f(xt, ht−1)

I xt : input
I ŷt: output
I ht−1: past memory
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FOLDED VERSION
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RECURRENT NEURAL NETWORKS

Recurrent
cell

ht

xt

ŷt
Apply a recurrence relation each time step to process
a sequence

(∀t ≥ 0) ht = fW (xt, ht−1)

I ht: current cell state
I fW : neural network with parameter matrix W

I xt: input
I ht−1: old cell state (memory)

To keep memory, W is shared through time.
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RECURRENT NEURAL NETWORKS

Recurrent
cell

ht

xt

ŷt

1 Update hidden state

ht = tanh(WT
xhxt +WT

hhht−1)

2 Compute output vector

ŷt = WT
hyht
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FOLDED VERSION- FORWARD PASS
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KERAS IMPLEMENTATION FROM SCRATCH
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KERAS IMPLEMENTATION: SIMPLERNN
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SOME ARCHITECTURES

h0

ŷ0

h1

ŷ1

h2

ŷ2

ht

ŷt

x x0 x1 x2 xt

ht
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. . .

One to many Many to one
Captioning, music generation Sentiment analysis
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ŷ0
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. . .

Many to Many Many to many
Video annotation Translation
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UNFOLDED VERSION- BACKWARD PASS
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UNFOLDED VERSION- BACKWARD PASS

Computing the gradient w.r.t. h0 involves

I many factors of W hh

I repeated gradient computation

Many high values

I Exploding gradients
I Gradient clipping

⇒ Bouncing and unstable
optimization

In all cases, possibility to loose long-term dependencies.
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UNFOLDED VERSION- BACKWARD PASS

Computing the gradient w.r.t. h0 involves

I many factors of W hh

I repeated gradient computation

Many high values

I Exploding gradients
I Gradient clipping

⇒ Bouncing and unstable
optimization

Many small values

I Vanishing gradients

⇒ No gradient at all

In all cases, possibility to loose long-term dependencies.
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BACKPROPAGATION THROUGH TIME

BPTT

I Basically chain rule as in classical backpropagation
I a bit more tricky, since gradients survive over time

Implementation

Already implemented, in Keras, using the classical train method.
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WHAT’S NEXT ?

Limits

1 I x1 goes t times through tanh.
⇒ The influence of x1 is much lesser than the one of xt
I W is shared: the weight associated to h1 doesn’t

compensate this loss of memory
⇒ RNN → short memory (the deeper the shorter)

2 Vanishing/exploding gradients

Limits

Some alternatives, improvments: LSTM, GRU... See next lecture !
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