TRANSFER LEARNING

Domain adaptation 0000

FINE TUNING

Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

TRANSFER LEARNING

DOMAIN ADAPTATION

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

LACK OF UNLABELED DATA

Can we do Deep Learning with few labeled data?

- Learn useful representation from unlabeled data
- Train on a nearby surrogate objective for which it is easier to generate labels

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

LACK OF UNLABELED DATA

Can we do Deep Learning with few labeled data?

- Learn useful representation from unlabeled data
- Train on a nearby surrogate objective for which it is easier to generate labels
- Transfer learned representation from a related task

TRANSFER LEARNING

Domain adaptation 0000

FINE TUNING

Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

Training a Deep net from scratch on your dataset can be hard

TRANSFER LEARNING O●OO Domain adaptation 0000

FINE TUNING

Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

Initial task/domain

Same domain

Same task

INTRODUCTION	
0	

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

TRANSFER LEARNING

Concept

- Several networks have already been trained on a different domain for a different source task
- Adapt this network to the target class

Many variations

- Close domain, different task
- Different domain, same task
- Partial/full adaptation

See Lecture

"CNN Architectures"

TRANSFER LEARNING 000● Domain adaptation 0000 FINE TUNING 000000 TARGET EXAMPLES

IMPLEMENTATION 0000

TRANSFER LEARNING

Source: Pang & Yang, TKDE 2010)

We concentrate on domain adaptation/multi-task learning

DOMAIN ADAPTATION

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

DOMAIN ADAPTATION

Domain adaptation

- Domains are modeled as probability distributions over an instance space
- Task associated to a domain (classification, regression..)

The question

How can we learn a low-error classifier on a target data distribution, using labeled data from a source distribution ?

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

DOMAIN ADAPTATION

- $\mathcal{X}_S, \mathcal{X}_T$: source/target domain
- ▶ $\mathcal{Y}_S, \mathcal{Y}_T$: source/target label space

What can happen

- ▶ Data distribution change from \mathcal{X}_S to \mathcal{X}_T or $\mathbb{P}_S(x) \neq \mathbb{P}_T(x)$.
- Conditional probabilities may be different: $\mathcal{Y}_S \neq \mathcal{Y}_T$ or $\mathbb{P}_S(y|x) \neq \mathbb{P}_T(y|x)$

FINE TUNING 000000 Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

FINE TUNING

Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

Use output of one or more layers as feature detector

FINE TUNING 000000 Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

TRANSFER LEARNING 0000 DOMAIN ADAPTATION

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

NOT ONLY IN COMPUTER VISION

TRANSFER LEARNING

Domain adaptation

FINE TUNING

Target examples

IMPLEMENTATION 0000

TRANSFER LEARNING

It works well...

... But can we do better than off-the-shelf features ?

TRANSFER LEARNING

DOMAIN ADAPTATION

FINE TUNING

TARGET EXAMPLES 00000 IMPLEMENTATION 0000

TRANSFER LEARNING

It works well...

... But can we do better than off-the-shelf features ?

Fine tuning

- Change the classification layer to match the problem
- Retrain some/all layers of the whole network

TRANSFER LEARNING

DOMAIN ADAPTATION 0000

FINE TUNING

TARGET EXAMPLES 00000 IMPLEMENTATION 0000

FINE TUNING

What layers to choose ?

- In computer vision
 - First layers detect simpler and more general patterns
 - Deeper layers capture more specific patterns related to data
- \Rightarrow Allow the last block(s) of convolution/pooling to be retrained.
- In sequential data: may keep the last few layers

TRANSFER LEARNING

Domain adaptation 0000

FINE TUNING

TARGET EXAMPLES 00000 IMPLEMENTATION 0000

FINE TUNING

Freeze / Finetune

- Frozen layers: not updated during backpropagation
- Finetuned layers: updated during backpropagation
- Depends on the target task:
 - freeze if target task labels are scarce and no overfitting
 - finetune if more target labels.
- $\rightarrow\,$ set learning rates to be different for each layer to find a tradeoff

TRANSFER LEARNING

Domain adaptation 0000 FINE TUNING

TARGET EXAMPLES 00000 IMPLEMENTATION 0000

FINE TUNING

- If sufficient examples are available, fine tuning improves generalization
- Transfer learning and fine tuning can serve as an initialization process
- Very often better performance than training from scratch

Yosinki et al, NIPS 2014 Source: 500 classes from ImageNet Target, another 500 classes from ImageNet.

FINE TUNING

Target examples

IMPLEMENTATION 0000

MULTITASK LEARNING

The multilayer architecture of Deep Neural Network makes them suitable for multitask learning.

Huang & al, ICASSP 2013.

Domain adaptation 0000

FINE TUNING 000000 TARGET EXAMPLES

IMPLEMENTATION 0000

The training task can also depend on the number of training examples in the target domain.

- Sufficient number of examples : OK
- No examples: unsupervised domain adaptation
- Few number of examples (Few-shot learning)
 - Embedding learning
 - Data augmentation
 - Data generation
 - Semi supervised domain adaptation

TRANSFER LEARNING

Domain adaptation 0000

FINE TUNING

Target examples ○●○○○ IMPLEMENTATION 0000

EMBEDDING LEARNING

Embedding learning: siamese, triplet network...

See lecture

Matching networks

Domain adaptation 0000

FINE TUNING

Target examples 00€00 IMPLEMENTATION 0000

DATA AUGMENTATION

Given one example, generate n new ones using transformations (rotation, scaling, noise adding, nonlinear transformations, color processing...)

Domain adaptation 0000

FINE TUNING 000000 Target examples 000€0 IMPLEMENTATION 0000

DATA GENERATION

Model the data distribution into the target space in order to be able to generate new and unseen samples.

- Generative Adversarial Networks (GANs)
- Variational Autoencoders
- ▶ ...

See lecture

Generative models

Domain adaptation 0000

FINE TUNING 000000 Target examples 0000● IMPLEMENTATION 0000

UN- OR SEMI-SUPERVISED DOMAIN ADAPTATION

- Matching source distributions
- Combination of fine tuning & unsupervised adaptation

Out of the scope of this lecture.

TRANSFER LEARNING

DOMAIN ADAPTATION 0000

FINE TUNING

TARGET EXAMPLES 00000 IMPLEMENTATION •000

TRAINABLE/NON TRAINABLE

$$y = \boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b}$$

dense = tt.keras.layers.Dense(7)
dense.build((None,5))
dense.traibable#False
print("veights:", tendense.weights))
print("veinable_weights:", lenidense.trainable_weights))
print("ronm_trainable_weights:", lenidense.nom_trainable_weights))
print(dense.weights)

TRANSFER LEARNING

Domain adaptation 0000

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

TRAINABLE/NON TRAINABLE

$$y = \boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b}$$

dense = tt.keras.layers.Dense(7)
dense.build([Non_5])
dense.trainable=false
print("veights:", len(dense.weights))
print("veights:", len(dense.trainable_weights))
print("non_trainable_weights:", len(dense.non_trainable_weights))
print(dense.weights)

weights: 2 restanble_weights: 8 restanble_weights: 8 restanble_weights: 8 restanble_weights: 9 restanble_weights: 9 restanble_weights: 8 restanble_weig

TRANSFER LEARNING

DOMAIN ADAPTATION 0000

FINE TUNING 000000 TARGET EXAMPLES 00000 IMPLEMENTATION 0000

IN KERAS

TRANSFER LEARNING 0000

DOMAIN ADAPTATION 0000

FINE TUNING

TARGET EXAMPLES 00000 IMPLEMENTATION

IN KERAS

Transfer Learning + Fine tuning