

CONVOLUTIONAL NEURAL NETWORKS

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

URDRATO ME O INFORMATIONE, I MODELINATION ET D'OPTIMISATION DES SYSTÈMES.

LARCRATORY OTHER HAT INCE. DE MODELEAUTON ET D'DET MISATION DES SYSTÈMES.

CONVOLUTIONAL NEURAL NETWORKS (CNNS)

- Dedicated to computer vision problems and more generally to any problem with a spatial (or sequential) structure.
- Change the classical paradigm of image analysis

Number of publications per year (IEEE+Springer+Elsevier)

URDRATO HE O INFORMATIONE, E MODELENATION ET O OPTIMISATION DES SYSTÈMES

Some applications

Deep is everywhere ;-):

- Medicine
- Security
- Internet
- Art
- NLP
- Games
- Images and videos analysis
- Vocal synthesis
- Pattern matching
- Autonomous driving
- Robotics
- Domotics
- Many More

MLP AND IMAGES

Why?

- ▶ A question of size: a 512×512 RGB image = 786 432 values. Let's build a 1 hidden layer MLP, producing an image from an image. Then the number of parameters to train is approximatively $6.19.10^{11}$, more than 1Tb in memory \rightarrow untractable.
- A question of information: pixel values may be related (correlated) to the values surrounding the pixel position → a 1D representation cannot easily handle this.
- A question of invariance: a representation meaningful at a certain location should be used everywhere

MLP AND IMAGES

- ► A 2-layer MLP can easily classify MNIST data, BUT images are vectorized : 28×28→784×1
- What if pixels values are shuffled ?

Original images

Shuffled images

Another set of 2,6 and 9

How can you recognize the digits ???

LANDRATOINE D'INFORMATIQUE, De modélisation et d'optimisation des systèmes

CONVOLUTIONAL NEURAL NETWORKS (CNN)

Key ideas of CNN

- Local connectivity: each neuron is connected to a patch in the image, not to the whole set of pixels.
- Convolution layers apply the same linear transformation locally everywhere while preserving the signal structure.
- Parameter sharing across patches, allows to be equivariant to translation.
- Pooling layers allows to be pseudo invariant to local translations and noise.

CONVOLUTION

Definition

In 1D, convolution (cross-correlation) between f and g:

$$f \circledast g(x) = \sum_{y+z=x} f(y) \cdot g(z) = \sum_{y} f(y)g(x+y)$$

$$\begin{split} & \text{In 2D: } g(x,y) = w \circledast f(x,y) = \sum_m \sum_n w(m,n).f(x+m,y+n) \\ & w\text{: convolution Kernel (or filter) applied to image } f. \end{split}$$

FIGURE: Exemple de convolution discrÃ"te

CONVOLUTION

- For multichannel images (eg color images), convolutions are usually computed for each channel and summed.
- Mutiple convolutions
- \Rightarrow Convolutions applied to *tensors*.

LARDRATO HE O INFORMATIONE, De Modélikation et d'Optimisation des systèmes.

Let

- x be the input tensor of size $C \times H \times W$.
- **k** be a kernel of size $C \times h \times w$ ($h \times w$ = receptive field)
- \triangleright y be the output tensor (the *feature map*), resulting from the convolutions.

A convolution layer implements K convolutions, using K kernels k.

 $\boldsymbol{y} \text{ is of size } K \times (H-h+1) \times (W-w+1) \text{ and }$

$$(orall k) \quad oldsymbol{y}(i,j) = \sum_{c=0}^{C-1} (oldsymbol{x}_c \circledast oldsymbol{k}_c)(i,j) + b_{ij}$$

The k's and b are shared parameters to learn.

LANDRATO HE D'INFORMATIQUE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

Additional Parameters

► padding: size of a zeroed frame added arount the input → controls the spatial dimension of the feature map

URDRATO ME D'INFORMATIONIE, E MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

Additional Parameters

 padding: size of a zeroed frame added arount the input

 \rightarrow controls the spatial dimension of the feature map

 stride: step size when moving the kernel across the signal

 \rightarrow reduces the spatial dimension of the feature map

Additional Parameters

- padding: size of a zeroed frame added arount the input
 - \rightarrow controls the spatial dimension of the feature map
- stride: step size when moving the kernel across the signal
 - \rightarrow reduces the spatial dimension of the feature map
- dilation: modulates the expansion of the kernels without adding weights.
 - \rightarrow increases the units receptive field size without increasing the number of parameters

POOLING LAYER

Pooling \approx downsampling: considers a receptive field of size $h \times w$ and replaces the set of values by the max, the mean (main pooling operations)

REATORE D'INFORMATIQUE, MODELINATION ET D'OPTIMISATION DES SYSTÈMES

POOLING LAYER

- No parameter to learn !
- Pooling layers provide invariance to any permutation inside one cell.
- pseudo-invariance to local translations.
- Interesting if we care more about the presence of a pattern rather than its exact position.

OTHER TYPICAL LAYERS

- Activation: add an activation function after the output of a layer (can be integrated in the layer itself).
- Dropout: randomly sets input units to 0 with a given frequency at each step during training. Helps prevent overfitting.
- Batch normalization: applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1. Works differently during training and during inference. Fasten the training process.
- Fully connected = MLP

Additional ressource

See Slides "Normalization" and "Dropout".

BACKPROPAGATION IN CNN

Same concept as for MLP: multivariable chain rule, with weight sharing constraint.

$$w_1 = w_2 = w_1 - rac{\eta}{2} \left(rac{\partial \mathcal{L}}{\partial w_1} + rac{\partial \mathcal{L}}{\partial w_2}
ight)$$

Additional ressource

See slides "Optimization for deep Learning" and "weight initialization"

LANDRATORE D'INFORMATIONE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

 Classical architectures: succession of (Conv -Activation -Pooling) blocks + fully connected layer(s) + softmax (for classification)

Since 2014, several other architectures proposed.

LANDRATORE D'INFORMATIONE, DE MODELISATION ET D'OPTIMISATION DES SYSTÈMES.

STATE OF THE ART

Method	# Params	Extra Data	ImageNet		ImageNet-ReaL [6]
			Top-1	Top-5	Precision@1
ResNet-50 [24]	26M	-	76.0	93.0	82.94
ResNet-152 [24]	60M	-	77.8	93.8	84.79
DenseNet-264 [28]	34M	-	77.9	93.9	-
Inception-v3 [62]	24M	-	78.8	94.4	83.58
Xception [11]	23M	-	79.0	94.5	-
Inception-v4 [61]	48M	-	80.0	95.0	-
Inception-resnet-v2 [61]	56M	-	80.1	95.1	-
ResNeXt-101 [78]	84M	-	80.9	95.6	85.18
PolyNet [87]	92M	-	81.3	95.8	-
SENet [27]	146M	-	82.7	96.2	-
NASNet-A [90]	89M	-	82.7	96.2	82.56
AmoebaNet-A [52]	87M	-	82.8	96.1	-
PNASNet [39]	86M	-	82.9	96.2	-
AmoebaNet-C + AutoAugment [12]	155M	-	83.5	96.5	-
GPipe [29]	557M	-	84.3	97.0	-
EfficientNet-B7 [63]	66M	-	85.0	97.2	-
EfficientNet-B7 + FixRes [70]	66M	-	85.3	97.4	-
EfficientNet-L2 [63]	480M	-	85.5	97.5	-
ResNet-50 Billion-scale SSL [79]	26M	3.5B labeled Instagram	81.2	96.0	-
ResNeXt-101 Billion-scale SSL [79]	193M	3.5B labeled Instagram	84.8	-	-
ResNeXt-101 WSL [42]	829M	3.5B labeled Instagram	85.4	97.6	88.19
FixRes ResNeXt-101 WSL [69]	829M	3.5B labeled Instagram	86.4	98.0	89.73
Big Transfer (BiT-L) [33]	928M	300M labeled JFT	87.5	98.5	90.54
Noisy Student (EfficientNet-L2) [77]	480M	300M unlabeled JFT	88.4	98.7	90.55
Noisy Student + FixRes [70]	480M	300M unlabeled JFT	88.5	98.7	-
Vision Transformer (ViT-H) [14]	632M	300M labeled JFT	88.55	-	90.72
EfficientNet-L2-NoisyStudent + SAM [16]	480M	300M unlabeled JFT	88.6	98.6	-
Meta Pseudo Labels (EfficientNet-B6-Wide)	390M	300M unlabeled JFT	90.0	98.7	91.12
Meta Pseudo Labels (EfficientNet-L2)	480M	300M unlabeled JFT	90.2	98.8	91.02

Source: Meta Pseudo Labels, Hieu Pham et al. (01/2021)

EXAMPLES

Two classical (and old) architectures

- LeNet-5 (LeCun et al, 1998): 61 706 trainable parameters
- AlexNet (Krizhevsky et al, 2012): 61 100 840 trainable parameters

THE DEEPER, THE BETTER ?

Image Large Scale Visual Recognition Challenge (Classification task)

INSIDE THE CNN

What we can do

- ► filters \rightarrow images
- distributions of activations on a batch of samples
- gradient of the response with respect to the input
- create a synthetic image that maximize a given filter

(b) Guided Backprop 'Cat'

(g) Original Image (h) Guided Backprop 'Dog'

(c) Grad-CAM 'Cat'

(i) Grad-CAM 'Dog'

INSIDE THE CNN

It seems that

- the first layers encode edges, directions and colorimetric properties
- directions and colors are combines to "textures"
- \blacktriangleright these patterns combine to more complex patterns \rightarrow semantic

