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CONVOLUTIONAL NEURAL NETWORKS (CNNS)

I Dedicated to computer vision problems and more generally to any
problem with a spatial (or sequential) structure.

I Change the classical paradigm of image analysis

Hand-designed
features

Image
preprocessing

Image analysis

Number of publications per year (IEEE+Springer+Elsevier)
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SOME APPLICATIONS

Deep is everywhere ;-):

I Medicine
I Security
I Internet
I Art
I NLP
I Games
I Images and videos analysis
I Vocal synthesis
I Pattern matching
I Autonomous driving
I Robotics
I Domotics
I Many More
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MLP AND IMAGES

Why ?

I A question of size: a 512× 512 RGB image = 786 432 values.
Let’s build a 1 hidden layer MLP, producing an image from an image.
Then the number of parameters to train is approximatively 6.19.1011,
more than 1Tb in memory→ untractable.

I A question of information: pixel values may be related (correlated) to
the values surrounding the pixel position→ a 1D representation
cannot easily handle this.

I A question of invariance: a representation meaningful at a certain
location should be used everywhere
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MLP AND IMAGES

I A 2-layer MLP can easily classify MNIST data, BUT images are vectorized :
28×28→784×1

I What if pixels values are shuffled ?

Original images

Shuffled images

Another set of 2,6 and 9

How can you recognize the digits ???
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CONVOLUTIONAL NEURAL NETWORKS (CNN)

Key ideas of CNN

I Local connectivity: each neuron is connected to a patch in the
image, not to the whole set of pixels.

I Convolution layers apply the same linear transformation locally
everywhere while preserving the signal structure.

I Parameter sharing across patches, allows to be equivariant to
translation.

I Pooling layers allows to be pseudo invariant to local translations and
noise.
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CONVOLUTION

Definition

In 1D, convolution (cross-correlation) between f and g:

f ~ g(x) =
∑

y+z=x

f(y).g(z) =
∑
y

f(y)g(x+ y)

In 2D: g(x, y) = w ~ f(x, y) =
∑
m

∑
n

w(m,n).f(x+m, y + n)

w: convolution Kernel (or filter) applied to image f .

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

f(x, y)

∗
1 0 1
0 1 0
1 0 1

w

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

g(x, y)

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

FIGURE: Exemple de convolution discrÃ¨te 7 / 1



CONVOLUTION

I For multichannel images (eg color images), convolutions are usually
computed for each channel and summed.

I Mutiple convolutions

⇒ Convolutions applied to tensors.

w ~ f(x, y) =
2∑

i=0

wc ~ fc(x, y) 4 kernels 5× 5 on color images
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CONVOLUTION LAYER

Let
I x be the input tensor of size C ×H ×W .
I k be a kernel of size C × h× w (h× w = receptive field)
I y be the output tensor (the feature map), resulting from the convolutions.

A convolution layer implements K convolutions, using K kernels k.

y is of size K × (H − h+ 1)× (W − w + 1) and

(∀k) y(i, j) =

C−1∑
c=0

(xc ~ kc)(i, j) + bij

The k’s and b are shared parameters to learn.
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CONVOLUTION LAYER

Additional Parameters

I padding: size of a zeroed frame added
arount the input
→ controls the spatial dimension of the
feature map

I

I
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CONVOLUTION LAYER

Additional Parameters

I padding: size of a zeroed frame added
arount the input
→ controls the spatial dimension of the
feature map

I stride: step size when moving the kernel
across the signal
→ reduces the spatial dimension of the
feature map

I dilation: modulates the expansion of the
kernels without adding weights.
→ increases the units receptive field size
without increasing the number of
parameters
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POOLING LAYER

Pooling ≈ downsampling: considers a receptive field of size h× w and replaces
the set of values by the max, the mean (main pooling operations)

4 6 8 10 0 2

0 13 1 0 8 0

6 4 0 15 3 2

9 7 2 1 0 3

13 10 8

9 15 3
2

2

2× 2 max pooling

4 6 8 10 0 2

0 13 1 0 8 0

6 4 0 15 3 2

9 7 2 1 0 3

5.754.752.5

6.5 4.5 2
2

2

2× 2 average pooling
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POOLING LAYER

I No parameter to learn !
I Pooling layers provide invariance to any permutation inside one cell.
I pseudo-invariance to local translations.
I Interesting if we care more about the presence of a pattern rather than its

exact position.
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OTHER TYPICAL LAYERS

I Activation: add an activation function after the output of a layer (can be
integrated in the layer itself).

I Dropout: randomly sets input units to 0 with a given frequency at each step
during training. Helps prevent overfitting.

I Batch normalization: applies a transformation that maintains the mean
output close to 0 and the output standard deviation close to 1. Works
differently during training and during inference. Fasten the training process.

I Fully connected = MLP

Additional ressource

See Slides ”Normalization” and ”Dropout”.
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BACKPROPAGATION IN CNN

Same concept as for MLP: multivariable chain rule, with weight sharing
constraint.

w1 = w2 = w1 −
η

2

(
∂L
∂w1

+
∂L
∂w2

)

Additional ressource

See slides ”Optimization for deep Learning” and ”weight initialization”
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I Classical architectures: succession of (Conv -Activation -Pooling) blocks +
fully connected layer(s) + softmax (for classification)
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I Since 2014, several other architectures proposed.

See...

Lectures ”CNN architectures” & ”Transfer Learning”.
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STATE OF THE ART

Source: Meta Pseudo Labels, Hieu Pham et al. (01/2021)
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EXAMPLES

Two classical (and old) architectures

I LeNet-5 (LeCun et al, 1998): 61 706
trainable parameters

I AlexNet (Krizhevsky et al, 2012): 61 100
840 trainable parameters
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THE DEEPER, THE BETTER ?

Image Large Scale Visual Recognition Challenge (Classification task )
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INSIDE THE CNN

What we can do

I filters→ images
I distributions of activations

on a batch of samples
I gradient of the response

with respect to the input
I create a synthetic image

that maximize a given filter
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INSIDE THE CNN

It seems that

I the first layers encode
edges, directions and
colorimetric properties

I directions and colors are
combines to ”textures”

I these patterns combine to
more complex patterns→
semantic
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