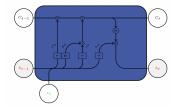
INTRODUCTION	LSTM	GRU	Applications	Implementati
0	0000000000000	00	000	0



LSTM AND GRU

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

KRATORE OTMORHATISTE, MODELIKETON ET OTPOTMISATION DES SYSTÈMES

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
•	0000000000000	00	000	0

Sequence modeling

- Handle variable-length inputs
- Share parameters across the sequence

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
•	0000000000000	00	000	0

Sequence modeling

- Handle variable-length inputs
- Share parameters across the sequence
- Keep track of long-term dependencies

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
•	0000000000000	00	000	0

Sequence modeling

- Handle variable-length inputs
- Share parameters across the sequence
- Keep track of long-term dependencies

Paul is a small boy and is hungry. He goes to the restaurant and eats a lot.

Solutions

- \blacktriangleright Activation function: using ReLU prevents σ' from shrinking the gradients when x>0
- Weights and bias initialisation can help (W = I, b=0)
- Think of another architecture

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	•000000000000	00	000	0

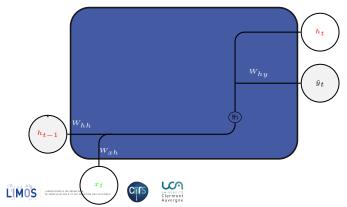
RECALL: RNN

1 Update hidden state

$$\mathbf{h_t} = tanh(W_{xh}^T x_t + W_{hh}^T \mathbf{h_{t-1}})$$

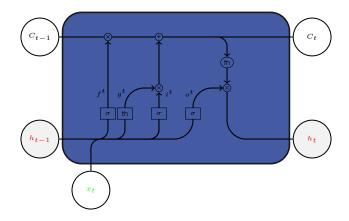
² Compute output vector

 $\hat{y}_t = W_{hy}^T \boldsymbol{h_t}$



INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000	00	000	0

LSTM



INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000	00	000	0

LSTM

Properties

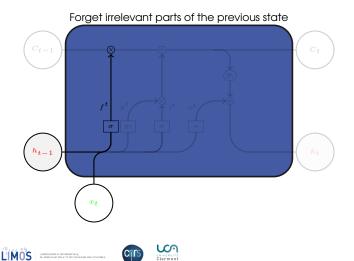
- Long Short Term Memory networks rely on gated cell to allow information tracking through time, even for several timesteps
- Contains computational blocks controling information flow
- Key concept: a persistent cell state C_t module, representation of past history
- in Keras: tensorflow.keras.layers.LSTM(num_units)

Gates

- Information is added or removed using gate structures.
- can let information through using eg. sigmoid and pointwise multiplication

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000	00	000	0

INSIDE LSTM: FORGET GATE



INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000	00	000	0

INSIDE LSTM: FORGET GATE

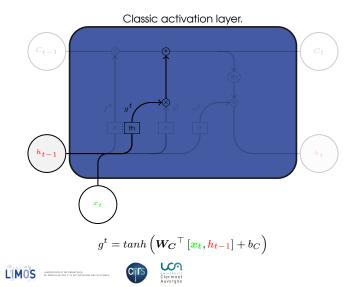
$$f^{t} = \sigma \left(\boldsymbol{W_{f}}^{\top} \left[\boldsymbol{x_{t}}, \boldsymbol{h_{t-1}} \right] + \boldsymbol{b_{f}} \right)$$

example: the state keeps the gender of the heroe in a text, for a good use of pronouns. If a new heroe appears, forget the gender.

- $f_t = 0$: completely forgetting previous state
- $f_t = 1$: completely keeping previous state
- ▶ b_f should be initiliazed with large values so that initially $f_t \approx 1$

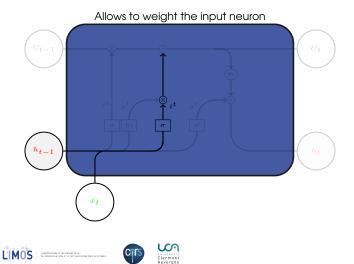
INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000	00	000	0

INSIDE LSTM: INPUT NEURON



INTRODUCTION	LSTM	GRU	Applications	Implementation
0	000000000000	00	000	0

INSIDE LSTM: UPDATE GATE



INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	0000000000000	00	000	0

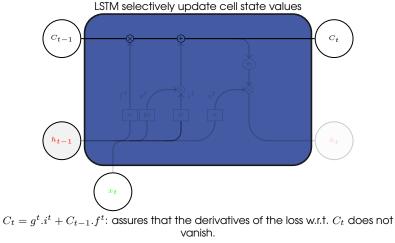
INSIDE LSTM: UPDATE GATE

$$i^{t} = \sigma \left(\boldsymbol{W_{i}}^{\top} \left[\boldsymbol{x_{t}}, \boldsymbol{h_{t-1}} \right] + b_{i} \right)$$

- Decide the importance of the contribution of the input neuron at each timestep.
- g^t and i^t store relevant new information in the current state.

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	0000000000000	00	000	0

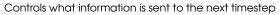
INSIDE LSTM: UPDATE STEP

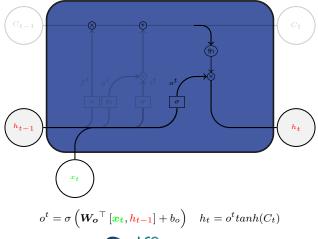


Chr

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	00000000000000	00	000	0

INSIDE LSTM: OUTPUT GATE





LANDRATO DE D'INFORMATIONE, DE MODELEVATION ET D'OPTIMISATION DES SYSTÈMES.

INTRODUCTION	LSTM	GRU	Applications	Implementation
0	000000000000000000000000000000000000000	00	000	0

In summary:

$$\begin{aligned} f^{t} &= \sigma \left(\boldsymbol{W_{f}}^{\top} \left[\boldsymbol{x}_{t}, \boldsymbol{h_{t-1}} \right] + \boldsymbol{b}_{f} \right) \\ g^{t} &= tanh \left(\boldsymbol{W_{C}}^{\top} \left[\boldsymbol{x}_{t}, \boldsymbol{h_{t-1}} \right] + \boldsymbol{b}_{C} \right) \\ i^{t} &= \sigma \left(\boldsymbol{W_{i}}^{\top} \left[\boldsymbol{x}_{t}, \boldsymbol{h_{t-1}} \right] + \boldsymbol{b}_{i} \right) \\ C_{t} &= g^{t} \cdot i^{t} + C_{t-1} \cdot f^{t} \\ o^{t} &= \sigma \left(\boldsymbol{W_{o}}^{\top} \left[\boldsymbol{x}_{t}, \boldsymbol{h_{t-1}} \right] + \boldsymbol{b}_{o} \right) \\ h_{t} &= o^{t} tanh(C_{t}) \end{aligned}$$

INTRODUCTION	LSTM	GRU	Applications	Implementation
0	000000000000000	00	000	0

KEY CONCEPTS

Concepts Maintain a separate state Ct from what is outputted Use gates to control the information flow can forget information (f^t) can store relevant information from the xt (g^t) can selectively update state (i^t) can return a filtered version of the state (o^t) introduction of self-loops to produce paths where gradients can flow for long durations Since the backward flow from Ct to Ct-1 is direct, backpropagation through time is computed with uninterrupted gradient flow.

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000000000000000000000000000000	00	000	0

EXAMPLE

- Task: predicting the next word of a sentence based on previous ones.
- Hypothesis: the cell state C_t contains the gender of the subject

Paul is a clever guy. He has his own car. Cathy and Mary are their sisters.

- 1 First step (f^t) : C_{t-1} contains the gender of the subject (Paul) to use proper pronouns (his). If a new subject arrive (Cathy and Mary), we may want to forget the old gender.
- ² Second step: (g^t, i^t) : what kind of information we want to store in C_t ? Here we may want to add the gender of the new subject (Cathy and Mary) to C_t
- ³ Third step (o^t): what we want to output. Since we see a new subject, we may want to output information relevant to verb (are)(eg. singular or plural subject)

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	000000000000	00	000	0

VARIANTS

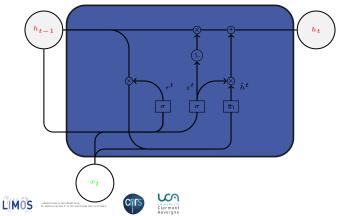
- LSTM with peephole connections
- Gates have access to C_{t-1}
- Bi-directional recurrent networks
- Gated Recurrent Units (GRU)
- Skip LSTMs
- ▶ ...

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	0000000000000	●O	000	0

GATED RECURRENT UNITS

Simplified version of LSTM:

- ▶ no o^t neither C_t
- only two gates
- easier to train



INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	0000000000000	0•	000	0

GATED RECURRENT UNITS

- ▶ reset gate r^t : determines how to combine x_t with h_{t-1}
- update gate z^t : what quantity of memory must be preserved (like a combination of f^t and g^t)

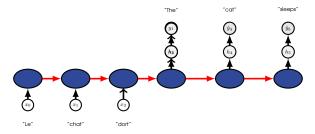
$$\begin{aligned} r^{t} &= \sigma \left(\boldsymbol{W_{r}}^{\top} \left[x_{t}, \boldsymbol{h_{t-1}} \right] + b_{r} \right) \\ z^{t} &= \sigma \left(\boldsymbol{W_{z}}^{\top} \left[x_{t}, \boldsymbol{h_{t-1}} \right] + b_{z} \right) \\ \tilde{h}^{t} &= tanh \left(\boldsymbol{W}^{\top} \left[x_{t}, r^{t} \boldsymbol{h_{t-1}} \right] + b_{h} \right) \\ \boldsymbol{h_{t}} &= (1 - z^{t}) \boldsymbol{h_{t-1}} + z^{t} \tilde{h}^{t} \end{aligned}$$

Gating network signals control how the present input and previous memory are used to update the current activation and produce the current state.

INTRODUCTION	LSTM	GRU	APPLICATIONS	IMPLEMENTATION
0	0000000000000	00	● ○ ○	0

MACHINE TRANSLATION

Many-to-Many architecture

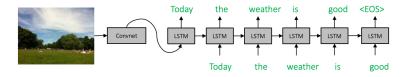


- the sentence in the source language is a sequence
- ▶ it is transformed in a latent space by an LSTM encoder
- the sentence in the target language is a sequence
- it is captured by a LSTM decoder

INTRODUCTION	LSTM	GRU	Applications	Implementation
0	000000000000	00	000	0

IMAGE CAPTIONING

Many-to-Many architecture



INTRODUCTION	LSTM	GRU	APPLICATIONS	IMPLEMENTATION
0	0000000000000	00	000	0

TIMESERIES MODELING

Environmental modeling

INTRODUCTION	LSTM	GRU	Applications	IMPLEMENTATION
0	0000000000000	00	000	•

KERAS

```
model = Sequential()
# 1 layer LSTM with batch size = 128
model.add(LSTM(128, input_shape=(...)))
model.add(Dense(..))
# Predicting the next word
model.add(Activation('softmax'))
model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])
print(model.summary())
```

```
# Using embeddings
embedding_size = 32
model = Sequential()
model.add(Embedding(top_words, embedding_size, input_length=max_length))
model.add(LSTM(100))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])
print(model.summary())
```